init commit
This commit is contained in:
107
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
Normal file
107
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
Normal file
@@ -0,0 +1,107 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_q7.c
|
||||
* Description: Q7 softmax function
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 softmax function
|
||||
* @param[in] vec_in pointer to input vector
|
||||
* @param[in] dim_vec input vector dimention
|
||||
* @param[out] p_out pointer to output vector
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Here, instead of typical natural logarithm e based softmax, we use
|
||||
* 2-based softmax here, i.e.,:
|
||||
*
|
||||
* y_i = 2^(x_i) / sum(2^x_j)
|
||||
*
|
||||
* The relative output will be different here.
|
||||
* But mathematically, the gradient will be the same
|
||||
* with a log(2) scaling factor.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out)
|
||||
{
|
||||
q31_t sum;
|
||||
int16_t i;
|
||||
uint8_t shift;
|
||||
q15_t base;
|
||||
base = -128;
|
||||
|
||||
/* We first search for the maximum */
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
if (vec_in[i] > base)
|
||||
{
|
||||
base = vec_in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* So the base is set to max-8, meaning
|
||||
* that we ignore really small values.
|
||||
* anyway, they will be 0 after shrinking to q7_t.
|
||||
*/
|
||||
base = base - (1 << 3);
|
||||
|
||||
sum = 0;
|
||||
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
shift = (uint8_t)__USAT(vec_in[i] - base, 3);
|
||||
sum += 0x1 << shift;
|
||||
}
|
||||
|
||||
/* This is effectively (0x1 << 20) / sum */
|
||||
int output_base = (1 << 20) / sum;
|
||||
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
|
||||
/* Here minimum value of 13+base-vec_in[i] will be 5 */
|
||||
shift = (uint8_t)__USAT(13 + base - vec_in[i], 5);
|
||||
p_out[i] = (q7_t)__SSAT((output_base >> shift), 8);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
Reference in New Issue
Block a user