init commit
This commit is contained in:
20
Drivers/CMSIS/NN/Source/ActivationFunctions/CMakeLists.txt
Normal file
20
Drivers/CMSIS/NN/Source/ActivationFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC})
|
||||
@@ -0,0 +1,96 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_activations_q15.c
|
||||
* Description: Q15 neural network activation function using direct table look-up
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nn_tables.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief neural network activation function using direct table look-up
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
|
||||
{
|
||||
uint16_t i = size;
|
||||
q15_t *pIn = data;
|
||||
q15_t *pOut = data;
|
||||
uint16_t shift_size = 8 + 3 - int_width;
|
||||
uint32_t bit_mask = 0x7FF >> int_width;
|
||||
uint32_t full_frac = bit_mask + 1;
|
||||
const q15_t *lookup_table;
|
||||
|
||||
switch (type)
|
||||
{
|
||||
case ARM_SIGMOID:
|
||||
lookup_table = sigmoidTable_q15;
|
||||
break;
|
||||
case ARM_TANH:
|
||||
default:
|
||||
lookup_table = tanhTable_q15;
|
||||
break;
|
||||
}
|
||||
|
||||
while (i)
|
||||
{
|
||||
q15_t out;
|
||||
q15_t in = *pIn++;
|
||||
q15_t frac = (uint32_t)in & bit_mask;
|
||||
q15_t value = lookup_table[(uint8_t)(in >> shift_size)];
|
||||
if ((in >> shift_size) != 0x7f)
|
||||
{
|
||||
q15_t value2 = lookup_table[(uint8_t)(1 + ((uint8_t)(in >> shift_size)))];
|
||||
/* doing the interpolation here for better accuracy */
|
||||
out = ((q31_t)(full_frac - frac) * value + (q31_t)value2 * frac) >> shift_size;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* the largest positive value does not have a right side for linear interpolation */
|
||||
out = value;
|
||||
}
|
||||
|
||||
*pOut++ = out;
|
||||
i--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
||||
@@ -0,0 +1,89 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_activations_q7.c
|
||||
* Description: Q7 neural network activation function using direct table look-up
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nn_tables.h"
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 neural network activation function using direct table look-up
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
* @param[in] int_width bit-width of the integer part, assume to be smaller than 3
|
||||
* @param[in] type type of activation functions
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* This is the direct table look-up approach.
|
||||
*
|
||||
* Assume here the integer part of the fixed-point is <= 3.
|
||||
* More than 3 just not making much sense, makes no difference with
|
||||
* saturation followed by any of these activation functions.
|
||||
*/
|
||||
|
||||
void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
|
||||
{
|
||||
uint16_t i = size;
|
||||
q7_t *pIn = data;
|
||||
q7_t *pOut = data;
|
||||
q7_t in;
|
||||
q7_t out;
|
||||
uint16_t shift_size = 3 - int_width;
|
||||
const q7_t *lookup_table;
|
||||
switch (type)
|
||||
{
|
||||
case ARM_SIGMOID:
|
||||
lookup_table = sigmoidTable_q7;
|
||||
break;
|
||||
case ARM_TANH:
|
||||
default:
|
||||
lookup_table = tanhTable_q7;
|
||||
break;
|
||||
}
|
||||
while (i)
|
||||
{
|
||||
in = *pIn++;
|
||||
out = lookup_table[(uint8_t)(in >> shift_size)];
|
||||
*pOut++ = out;
|
||||
i--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
||||
65
Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu6_s8.c
Normal file
65
Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu6_s8.c
Normal file
@@ -0,0 +1,65 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_relu6_s8.c
|
||||
* Description: Basic s8 version of ReLU6
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Basic ReLU6 function
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_relu6_s8(q7_t *data, uint16_t size)
|
||||
{
|
||||
int32_t i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
int32_t ip = data[i];
|
||||
|
||||
ip = MAX(ip, 0);
|
||||
data[i] = MIN(ip, 6);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
||||
104
Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
Normal file
104
Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
Normal file
@@ -0,0 +1,104 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_relu_q15.c
|
||||
* Description: Q15 version of ReLU
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 RELU function
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Optimized relu with QSUB instructions.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_relu_q15(q15_t *data, uint16_t size)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for M cores with DSP extension */
|
||||
|
||||
uint16_t i = size >> 1;
|
||||
q15_t *input = data;
|
||||
q15_t *output = data;
|
||||
q31_t in;
|
||||
q31_t buf;
|
||||
q31_t mask;
|
||||
|
||||
while (i)
|
||||
{
|
||||
in = arm_nn_read_q15x2_ia((const q15_t **)&input);
|
||||
|
||||
/* extract the first bit */
|
||||
buf = __ROR(in & 0x80008000, 15);
|
||||
|
||||
/* if MSB=1, mask will be 0xFF, 0x0 otherwise */
|
||||
mask = __QSUB16(0x00000000, buf);
|
||||
|
||||
arm_nn_write_q15x2_ia(&output, in & (~mask));
|
||||
i--;
|
||||
}
|
||||
|
||||
if (size & 0x1)
|
||||
{
|
||||
if (*input < 0)
|
||||
{
|
||||
*input = 0;
|
||||
}
|
||||
input++;
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for M cores without DSP extension */
|
||||
uint16_t i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
if (data[i] < 0)
|
||||
data[i] = 0;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
||||
109
Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
Normal file
109
Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
Normal file
@@ -0,0 +1,109 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_relu_q7.c
|
||||
* Description: Q7 version of ReLU
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Acti
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 RELU function
|
||||
* @param[in,out] data pointer to input
|
||||
* @param[in] size number of elements
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Optimized relu with QSUB instructions.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_relu_q7(q7_t *data, uint16_t size)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for M cores with DSP extension */
|
||||
|
||||
uint16_t i = size >> 2;
|
||||
q7_t *input = data;
|
||||
q7_t *output = data;
|
||||
q31_t in;
|
||||
q31_t buf;
|
||||
q31_t mask;
|
||||
|
||||
while (i)
|
||||
{
|
||||
in = arm_nn_read_q7x4_ia((const q7_t **)&input);
|
||||
|
||||
/* extract the first bit */
|
||||
buf = (int32_t)__ROR((uint32_t)in & 0x80808080, 7);
|
||||
|
||||
/* if MSB=1, mask will be 0xFF, 0x0 otherwise */
|
||||
mask = __QSUB8(0x00000000, buf);
|
||||
|
||||
arm_nn_write_q7x4_ia(&output, in & (~mask));
|
||||
|
||||
i--;
|
||||
}
|
||||
|
||||
i = size & 0x3;
|
||||
while (i)
|
||||
{
|
||||
if (*input < 0)
|
||||
{
|
||||
*input = 0;
|
||||
}
|
||||
input++;
|
||||
i--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for cores without DSP extension */
|
||||
|
||||
uint16_t i;
|
||||
|
||||
for (i = 0; i < size; i++)
|
||||
{
|
||||
if (data[i] < 0)
|
||||
data[i] = 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Acti group
|
||||
*/
|
||||
20
Drivers/CMSIS/NN/Source/BasicMathFunctions/CMakeLists.txt
Normal file
20
Drivers/CMSIS/NN/Source/BasicMathFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_*.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC})
|
||||
@@ -0,0 +1,105 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_elementwise_add_s16
|
||||
* Description: Elementwise add
|
||||
*
|
||||
* $Date: 14 Februari 2022
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s16 elementwise add
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Note: __SHIFT is expected to be <=0 */
|
||||
|
||||
arm_status arm_elementwise_add_s16(const int16_t *input_1_vect,
|
||||
const int16_t *input_2_vect,
|
||||
const int32_t input_1_offset,
|
||||
const int32_t input_1_mult,
|
||||
const int32_t input_1_shift,
|
||||
const int32_t input_2_offset,
|
||||
const int32_t input_2_mult,
|
||||
const int32_t input_2_shift,
|
||||
const int32_t left_shift,
|
||||
int16_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_activation_min,
|
||||
const int32_t out_activation_max,
|
||||
const int32_t block_size)
|
||||
{
|
||||
(void)input_1_offset;
|
||||
(void)input_2_offset;
|
||||
(void)out_offset;
|
||||
int32_t loop_count;
|
||||
int32_t input_1;
|
||||
int32_t input_2;
|
||||
int32_t sum;
|
||||
|
||||
loop_count = block_size;
|
||||
|
||||
while (loop_count > 0)
|
||||
{
|
||||
/* C = A + B */
|
||||
input_1 = *input_1_vect++ << left_shift;
|
||||
input_2 = *input_2_vect++ << left_shift;
|
||||
|
||||
input_1 = arm_nn_requantize(input_1, input_1_mult, input_1_shift);
|
||||
input_2 = arm_nn_requantize(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
sum = arm_nn_requantize(sum, out_mult, out_shift);
|
||||
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
|
||||
*output++ = (int16_t)sum;
|
||||
|
||||
/* Decrement loop counter */
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,234 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_elementwise_add_s8
|
||||
* Description: Elementwise add
|
||||
*
|
||||
* $Date: 3 Februari 2022
|
||||
* $Revision: V.2.6.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 elementwise add
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
/* Note: __SHIFT is expected to be <=0 */
|
||||
|
||||
arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
|
||||
const int8_t *input_2_vect,
|
||||
const int32_t input_1_offset,
|
||||
const int32_t input_1_mult,
|
||||
const int32_t input_1_shift,
|
||||
const int32_t input_2_offset,
|
||||
const int32_t input_2_mult,
|
||||
const int32_t input_2_shift,
|
||||
const int32_t left_shift,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_activation_min,
|
||||
const int32_t out_activation_max,
|
||||
const int32_t block_size)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t count = block_size;
|
||||
|
||||
while (count > 0)
|
||||
{
|
||||
int32x4_t vect_1;
|
||||
int32x4_t vect_2;
|
||||
|
||||
mve_pred16_t p = vctp32q((uint32_t)count);
|
||||
|
||||
vect_1 = vldrbq_z_s32(input_1_vect, p);
|
||||
vect_2 = vldrbq_z_s32(input_2_vect, p);
|
||||
|
||||
vect_1 = vaddq_s32(vect_1, vdupq_n_s32(input_1_offset));
|
||||
vect_2 = vaddq_s32(vect_2, vdupq_n_s32(input_2_offset));
|
||||
|
||||
vect_1 = vshlq_r_s32(vect_1, left_shift);
|
||||
vect_2 = vshlq_r_s32(vect_2, left_shift);
|
||||
|
||||
vect_1 = arm_requantize_mve(vect_1, input_1_mult, input_1_shift);
|
||||
vect_2 = arm_requantize_mve(vect_2, input_2_mult, input_2_shift);
|
||||
|
||||
vect_1 = vaddq_s32(vect_1, vect_2);
|
||||
vect_1 = arm_requantize_mve(vect_1, out_mult, out_shift);
|
||||
|
||||
vect_1 = vaddq_n_s32(vect_1, out_offset);
|
||||
|
||||
vect_1 = vmaxq_s32(vect_1, vdupq_n_s32(out_activation_min));
|
||||
vect_1 = vminq_s32(vect_1, vdupq_n_s32(out_activation_max));
|
||||
|
||||
input_1_vect += 4;
|
||||
input_2_vect += 4;
|
||||
vstrbq_p_s32(output, vect_1, p);
|
||||
|
||||
output += 4;
|
||||
count -= 4;
|
||||
}
|
||||
#else
|
||||
int32_t loop_count;
|
||||
int32_t input_1;
|
||||
int32_t input_2;
|
||||
int32_t sum;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
int32_t a_1, b_1, a_2, b_2;
|
||||
|
||||
int32_t offset_1_packed, offset_2_packed;
|
||||
|
||||
int8_t r1, r2, r3, r4;
|
||||
|
||||
offset_1_packed = (input_1_offset << 16U) | (input_1_offset & 0x0FFFFL);
|
||||
offset_2_packed = (input_2_offset << 16U) | (input_2_offset & 0x0FFFFL);
|
||||
|
||||
loop_count = block_size >> 2;
|
||||
|
||||
while (loop_count > 0)
|
||||
{
|
||||
/* 4 outputs are calculated in one loop. The order of calculation is follows the order of output sign extension
|
||||
intrinsic */
|
||||
input_1_vect = read_and_pad_reordered(input_1_vect, &b_1, &a_1);
|
||||
input_2_vect = read_and_pad_reordered(input_2_vect, &b_2, &a_2);
|
||||
|
||||
a_1 = __SADD16(a_1, offset_1_packed);
|
||||
b_1 = __SADD16(b_1, offset_1_packed);
|
||||
|
||||
a_2 = __SADD16(a_2, offset_2_packed);
|
||||
b_2 = __SADD16(b_2, offset_2_packed);
|
||||
|
||||
/* Sum 1 */
|
||||
input_1 = (b_1 & 0x0FFFF) << left_shift;
|
||||
|
||||
input_1 = arm_nn_requantize(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = (b_2 & 0x0FFFF) << left_shift;
|
||||
input_2 = arm_nn_requantize(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
sum = arm_nn_requantize(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r1 = (q7_t)sum;
|
||||
|
||||
/* Sum 3 */
|
||||
input_1 = ((b_1 >> 16) & 0x0FFFF) << left_shift;
|
||||
input_1 = arm_nn_requantize(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = ((b_2 >> 16) & 0x0FFFF) << left_shift;
|
||||
input_2 = arm_nn_requantize(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
sum = arm_nn_requantize(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r3 = (q7_t)sum;
|
||||
|
||||
/* Sum 2 */
|
||||
input_1 = (a_1 & 0x0FFFF) << left_shift;
|
||||
input_1 = arm_nn_requantize(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = (a_2 & 0x0FFFF) << left_shift;
|
||||
input_2 = arm_nn_requantize(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
sum = arm_nn_requantize(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r2 = (q7_t)sum;
|
||||
|
||||
/* Sum 4 */
|
||||
input_1 = ((a_1 >> 16) & 0x0FFFF) << left_shift;
|
||||
input_1 = arm_nn_requantize(input_1, input_1_mult, input_1_shift);
|
||||
|
||||
input_2 = ((a_2 >> 16) & 0x0FFFF) << left_shift;
|
||||
input_2 = arm_nn_requantize(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
sum = arm_nn_requantize(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
r4 = (q7_t)sum;
|
||||
|
||||
arm_nn_write_q7x4_ia(&output, PACK_Q7x4_32x1(r1, r2, r3, r4));
|
||||
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
loop_count = block_size & 0x3;
|
||||
#else
|
||||
loop_count = block_size;
|
||||
#endif
|
||||
|
||||
while (loop_count > 0)
|
||||
{
|
||||
/* C = A + B */
|
||||
|
||||
input_1 = (*input_1_vect++ + input_1_offset) << left_shift;
|
||||
input_2 = (*input_2_vect++ + input_2_offset) << left_shift;
|
||||
|
||||
input_1 = arm_nn_requantize(input_1, input_1_mult, input_1_shift);
|
||||
input_2 = arm_nn_requantize(input_2, input_2_mult, input_2_shift);
|
||||
|
||||
sum = input_1 + input_2;
|
||||
sum = arm_nn_requantize(sum, out_mult, out_shift);
|
||||
sum += out_offset;
|
||||
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
|
||||
*output++ = (q7_t)sum;
|
||||
|
||||
/* Decrement loop counter */
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_MVEI */
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,95 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_elementwise_mul_s16
|
||||
* Description: Element wise multiplication
|
||||
*
|
||||
* $Date: 14 Februari 2022
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief s16 element wise multiplication of two vectors
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_elementwise_mul_s16(const int16_t *input_1_vect,
|
||||
const int16_t *input_2_vect,
|
||||
const int32_t input_1_offset,
|
||||
const int32_t input_2_offset,
|
||||
int16_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_activation_min,
|
||||
const int32_t out_activation_max,
|
||||
const int32_t block_size)
|
||||
{
|
||||
(void)input_1_offset;
|
||||
(void)input_2_offset;
|
||||
(void)out_offset;
|
||||
int32_t loop_count;
|
||||
int32_t input_1;
|
||||
int32_t input_2;
|
||||
int32_t mul_res;
|
||||
|
||||
loop_count = block_size;
|
||||
|
||||
while (loop_count > 0)
|
||||
{
|
||||
/* C = A * B */
|
||||
|
||||
input_1 = *input_1_vect++;
|
||||
input_2 = *input_2_vect++;
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift);
|
||||
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
|
||||
*output++ = (int16_t)mul_res;
|
||||
|
||||
/* Decrement loop counter */
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,200 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_elementwise_mul_s8
|
||||
* Description: Element wise multiplication
|
||||
*
|
||||
* $Date: 3 Februari 2022
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup BasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief s8 element wise multiplication of two vectors
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
|
||||
const int8_t *input_2_vect,
|
||||
const int32_t input_1_offset,
|
||||
const int32_t input_2_offset,
|
||||
int8_t *output,
|
||||
const int32_t out_offset,
|
||||
const int32_t out_mult,
|
||||
const int32_t out_shift,
|
||||
const int32_t out_activation_min,
|
||||
const int32_t out_activation_max,
|
||||
const int32_t block_size)
|
||||
{
|
||||
|
||||
int32_t loop_count;
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
loop_count = (block_size + 3) / 4;
|
||||
uint32_t num_elements = block_size;
|
||||
|
||||
for (int i = 0; i < loop_count; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp32q(num_elements);
|
||||
|
||||
int32x4_t input_1 = vldrbq_z_s32(input_1_vect, p);
|
||||
input_1 = vaddq_n_s32(input_1, input_1_offset);
|
||||
|
||||
int32x4_t input_2 = vldrbq_z_s32(input_2_vect, p);
|
||||
input_2 = vaddq_n_s32(input_2, input_2_offset);
|
||||
|
||||
int32x4_t res_0 = vmulq_s32(input_1, input_2);
|
||||
|
||||
res_0 = arm_requantize_mve_32x4(res_0, vdupq_n_s32(out_mult), vdupq_n_s32(out_shift));
|
||||
|
||||
res_0 += vdupq_n_s32(out_offset);
|
||||
|
||||
res_0 = vmaxq_s32(res_0, vdupq_n_s32(out_activation_min));
|
||||
res_0 = vminq_s32(res_0, vdupq_n_s32(out_activation_max));
|
||||
|
||||
vstrbq_p_s32(output, res_0, p);
|
||||
input_1_vect += 4;
|
||||
input_2_vect += 4;
|
||||
output += 4;
|
||||
num_elements -= 4;
|
||||
}
|
||||
|
||||
#else
|
||||
int32_t input_1;
|
||||
int32_t input_2;
|
||||
int32_t mul_res;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
int32_t a_1, b_1, a_2, b_2;
|
||||
|
||||
int32_t offset_1_packed, offset_2_packed;
|
||||
|
||||
int8_t r1, r2, r3, r4;
|
||||
|
||||
offset_1_packed = (input_1_offset << 16U) | (input_1_offset & 0x0FFFFL);
|
||||
offset_2_packed = (input_2_offset << 16U) | (input_2_offset & 0x0FFFFL);
|
||||
|
||||
loop_count = block_size >> 2;
|
||||
|
||||
while (loop_count > 0)
|
||||
{
|
||||
/* 4 outputs are calculated in one loop. The order of calculation is follows the order of output sign extension
|
||||
intrinsic */
|
||||
input_1_vect = read_and_pad_reordered(input_1_vect, &b_1, &a_1);
|
||||
input_2_vect = read_and_pad_reordered(input_2_vect, &b_2, &a_2);
|
||||
|
||||
a_1 = __SADD16(a_1, offset_1_packed);
|
||||
b_1 = __SADD16(b_1, offset_1_packed);
|
||||
|
||||
a_2 = __SADD16(a_2, offset_2_packed);
|
||||
b_2 = __SADD16(b_2, offset_2_packed);
|
||||
|
||||
/* Mul 1 */
|
||||
input_1 = (int16_t)(b_1 & 0x0FFFFL);
|
||||
input_2 = (int16_t)(b_2 & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r1 = (q7_t)mul_res;
|
||||
|
||||
/* Mul 3 */
|
||||
input_1 = (int16_t)((b_1 >> 16U) & 0x0FFFFL);
|
||||
input_2 = (int16_t)((b_2 >> 16U) & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r3 = (q7_t)mul_res;
|
||||
|
||||
/* Mul 2 */
|
||||
input_1 = (int16_t)(a_1 & 0x0FFFFL);
|
||||
input_2 = (int16_t)(a_2 & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r2 = (q7_t)mul_res;
|
||||
|
||||
/* Mul 4 */
|
||||
input_1 = (int16_t)((a_1 >> 16U) & 0x0FFFFL);
|
||||
input_2 = (int16_t)((a_2 >> 16U) & 0x0FFFFL);
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
r4 = (q7_t)mul_res;
|
||||
|
||||
arm_nn_write_q7x4_ia(&output, PACK_Q7x4_32x1(r1, r2, r3, r4));
|
||||
|
||||
loop_count--;
|
||||
}
|
||||
|
||||
loop_count = block_size & 0x3;
|
||||
#else
|
||||
loop_count = block_size;
|
||||
#endif
|
||||
|
||||
while (loop_count > 0)
|
||||
{
|
||||
/* C = A * B */
|
||||
|
||||
input_1 = *input_1_vect++ + input_1_offset;
|
||||
input_2 = *input_2_vect++ + input_2_offset;
|
||||
|
||||
mul_res = input_1 * input_2;
|
||||
mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset;
|
||||
|
||||
mul_res = MAX(mul_res, out_activation_min);
|
||||
mul_res = MIN(mul_res, out_activation_max);
|
||||
|
||||
*output++ = (q7_t)mul_res;
|
||||
|
||||
/* Decrement loop counter */
|
||||
loop_count--;
|
||||
}
|
||||
#endif
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of BasicMath group
|
||||
*/
|
||||
98
Drivers/CMSIS/NN/Source/CMakeLists.txt
Normal file
98
Drivers/CMSIS/NN/Source/CMakeLists.txt
Normal file
@@ -0,0 +1,98 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
SET(ROOT ${CMSIS_PATH})
|
||||
|
||||
# Select which parts of the CMSIS-DSP must be compiled.
|
||||
# There are some dependencies between the parts but they are not tracked
|
||||
# by this cmake. So, enabling some functions may require to enable some
|
||||
# other ones.
|
||||
option(CONCATENATION "Concatenation" ON)
|
||||
option(FULLYCONNECTED "Fully Connected" ON)
|
||||
option(CONVOLUTION "Convolutions" ON)
|
||||
option(ACTIVATION "Activations" ON)
|
||||
option(POOLING "Pooling" ON)
|
||||
option(SOFTMAX "Softmax" ON)
|
||||
option(BASICMATHSNN "Basic Maths for NN" ON)
|
||||
option(RESHAPE "Reshape" ON)
|
||||
option(SVDF "SVDF" ON)
|
||||
|
||||
# When OFF it is the default behavior : all tables are included.
|
||||
option(NNSUPPORT "NN Support" ON)
|
||||
|
||||
|
||||
###########################
|
||||
#
|
||||
# CMSIS NN
|
||||
#
|
||||
###########################
|
||||
|
||||
# NN Sources
|
||||
SET(NN ${ROOT}/CMSIS/NN)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH ${NN}/Source)
|
||||
|
||||
add_library(cmsis-nn STATIC)
|
||||
|
||||
target_compile_options(cmsis-nn PRIVATE -Ofast)
|
||||
|
||||
### Includes
|
||||
target_include_directories(cmsis-nn PUBLIC "${NN}/Include")
|
||||
target_include_directories(cmsis-nn PUBLIC "${ROOT}/CMSIS/Core/Include")
|
||||
target_include_directories(cmsis-nn PUBLIC "${ROOT}/CMSIS/DSP/Include")
|
||||
|
||||
if (BASICMATHSNN)
|
||||
add_subdirectory(BasicMathFunctions)
|
||||
endif()
|
||||
|
||||
if (CONCATENATION)
|
||||
add_subdirectory(ConcatenationFunctions)
|
||||
endif()
|
||||
|
||||
if (FULLYCONNECTED)
|
||||
add_subdirectory(FullyConnectedFunctions)
|
||||
endif()
|
||||
|
||||
if (CONVOLUTION)
|
||||
add_subdirectory(ConvolutionFunctions)
|
||||
endif()
|
||||
|
||||
if (ACTIVATION)
|
||||
add_subdirectory(ActivationFunctions)
|
||||
endif()
|
||||
|
||||
if (POOLING)
|
||||
add_subdirectory(PoolingFunctions)
|
||||
endif()
|
||||
|
||||
if (SOFTMAX)
|
||||
add_subdirectory(SoftmaxFunctions)
|
||||
endif()
|
||||
|
||||
if (SVDF)
|
||||
add_subdirectory(SVDFunctions)
|
||||
endif()
|
||||
|
||||
if (RESHAPE)
|
||||
add_subdirectory(ReshapeFunctions)
|
||||
endif()
|
||||
|
||||
# Keep NNSUPPORT at the end
|
||||
if (NNSUPPORT)
|
||||
add_subdirectory(NNSupportFunctions)
|
||||
endif()
|
||||
@@ -0,0 +1,20 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_*.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC})
|
||||
@@ -0,0 +1,66 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_w.c
|
||||
* Description: s8 version of concatenation along the W axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the W axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_w(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint32_t offset_w)
|
||||
{
|
||||
const uint32_t input_copy_size = input_x * input_y * input_z * input_w;
|
||||
|
||||
output += offset_w * (input_x * input_y * input_z);
|
||||
|
||||
arm_memcpy_q7(output, input, input_copy_size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
||||
@@ -0,0 +1,75 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_x.c
|
||||
* Description: s8 version of concatenation along the X axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the X axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_x(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint16_t output_x,
|
||||
const uint32_t offset_x)
|
||||
{
|
||||
const uint32_t num_iterations = input_y * input_z * input_w;
|
||||
|
||||
output += offset_x;
|
||||
|
||||
uint32_t i;
|
||||
|
||||
// Copy per row
|
||||
for (i = 0; i < num_iterations; ++i)
|
||||
{
|
||||
arm_memcpy_q7(output, input, input_x);
|
||||
input += input_x;
|
||||
output += output_x;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
||||
@@ -0,0 +1,76 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_y.c
|
||||
* Description: s8 version of concatenation along the Y axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the Y axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_y(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint16_t output_y,
|
||||
const uint32_t offset_y)
|
||||
{
|
||||
const uint32_t num_iterations = input_z * input_w;
|
||||
const uint32_t input_copy_size = input_x * input_y;
|
||||
const uint32_t output_stride = input_x * output_y;
|
||||
|
||||
output += offset_y * input_x;
|
||||
uint32_t i;
|
||||
|
||||
// Copy per tile
|
||||
for (i = 0; i < num_iterations; ++i)
|
||||
{
|
||||
arm_memcpy_q7(output, input, input_copy_size);
|
||||
input += input_copy_size;
|
||||
output += output_stride;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
||||
@@ -0,0 +1,75 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_concatenation_s8_z.c
|
||||
* Description: s8 version of concatenation along the Z axis
|
||||
*
|
||||
* $Date: October 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Concatenation
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 version of concatenation along the Z axis
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_concatenation_s8_z(const int8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_z,
|
||||
const uint16_t input_w,
|
||||
int8_t *output,
|
||||
const uint16_t output_z,
|
||||
const uint32_t offset_z)
|
||||
{
|
||||
const uint32_t input_copy_size = input_x * input_y * input_z;
|
||||
const uint32_t output_stride = input_x * input_y * output_z;
|
||||
|
||||
output += offset_z * (input_x * input_y);
|
||||
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < input_w; ++i)
|
||||
{
|
||||
arm_memcpy_q7(output, input, input_copy_size);
|
||||
input += input_copy_size;
|
||||
output += output_stride;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Concatenation group
|
||||
*/
|
||||
24
Drivers/CMSIS/NN/Source/ConvolutionFunctions/CMakeLists.txt
Normal file
24
Drivers/CMSIS/NN/Source/ConvolutionFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,24 @@
|
||||
#
|
||||
# Copyright (c) 2019-2022 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8*.c")
|
||||
file(GLOB SRC_S16 "./*_s16*.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC} ${SRC_S16})
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,205 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_1_x_n_s8.c
|
||||
* Description: s8 version of 1xN convolution using symmetric quantization.
|
||||
*
|
||||
* $Date: December 14, 2021
|
||||
* $Revision: V.2.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* 1xN s8 convolution function.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
arm_status status = ARM_MATH_SUCCESS;
|
||||
if (output_dims->w % 4 != 0)
|
||||
{
|
||||
status = ARM_MATH_SIZE_MISMATCH;
|
||||
goto out;
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
(void)ctx;
|
||||
|
||||
const uint16_t input_x = input_dims->w;
|
||||
const uint16_t kernel_x = filter_dims->w;
|
||||
const uint16_t output_x = output_dims->w;
|
||||
const uint16_t output_ch = output_dims->c;
|
||||
const uint16_t input_ch = input_dims->c;
|
||||
const uint16_t pad_x = conv_params->padding.w;
|
||||
const uint16_t stride_x = conv_params->stride.w;
|
||||
|
||||
const int32_t input_offset = conv_params->input_offset;
|
||||
const int32_t out_offset = conv_params->output_offset;
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
for (int i_out_x = 0; i_out_x <= (output_x - 4); i_out_x += 4)
|
||||
{
|
||||
int32_t input_begin_idx[4];
|
||||
int32_t ker_begin_idx[4];
|
||||
int32_t ker_end_idx[4];
|
||||
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
const int32_t est_input_x_idx = stride_x * (i_out_x + i) - pad_x;
|
||||
input_begin_idx[i] = MAX(0, est_input_x_idx);
|
||||
ker_begin_idx[i] = MAX(0, -est_input_x_idx);
|
||||
ker_end_idx[i] = MIN(kernel_x, input_x - est_input_x_idx);
|
||||
}
|
||||
|
||||
if ((ker_begin_idx[0] != 0) || (ker_end_idx[3] != kernel_x))
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32x4_t s_offset;
|
||||
int32_t acc[4];
|
||||
{
|
||||
int32_t sum_row[4];
|
||||
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[0] - ker_begin_idx[0]) * input_ch,
|
||||
input_data + input_begin_idx[0] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) +
|
||||
(ker_begin_idx[0] * input_ch),
|
||||
&sum_row[0],
|
||||
&acc[0]);
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[1] - ker_begin_idx[1]) * input_ch,
|
||||
input_data + input_begin_idx[1] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) +
|
||||
(ker_begin_idx[1] * input_ch),
|
||||
&sum_row[1],
|
||||
&acc[1]);
|
||||
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[2] - ker_begin_idx[2]) * input_ch,
|
||||
input_data + input_begin_idx[2] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) +
|
||||
(ker_begin_idx[2] * input_ch),
|
||||
&sum_row[2],
|
||||
&acc[2]);
|
||||
|
||||
(void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[3] - ker_begin_idx[3]) * input_ch,
|
||||
input_data + input_begin_idx[3] * input_ch,
|
||||
filter_data + (input_ch * kernel_x * i_out_ch) +
|
||||
(ker_begin_idx[3] * input_ch),
|
||||
&sum_row[3],
|
||||
&acc[3]);
|
||||
|
||||
s_offset = vldrwq_s32(sum_row);
|
||||
}
|
||||
int32x4_t res = vldrwq_s32(acc);
|
||||
s_offset = vmulq_n_s32(s_offset, input_offset);
|
||||
res = vaddq_s32(res, s_offset);
|
||||
if (bias_data)
|
||||
{
|
||||
res = vaddq_n_s32(res, bias_data[i_out_ch]);
|
||||
}
|
||||
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
res = vaddq_n_s32(res, out_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(out_activation_max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
|
||||
vstrbq_scatter_offset_s32(output_data, scatter_offset, res);
|
||||
output_data++;
|
||||
}
|
||||
output_data += (3 * output_ch);
|
||||
}
|
||||
else
|
||||
{
|
||||
output_data = arm_nn_mat_mul_core_4x_s8(kernel_x * input_ch,
|
||||
stride_x * input_ch,
|
||||
input_data + input_begin_idx[0] * input_ch,
|
||||
filter_data,
|
||||
output_ch,
|
||||
conv_params,
|
||||
quant_params,
|
||||
bias_data,
|
||||
output_data);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
status = arm_convolve_s8(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
#endif
|
||||
|
||||
out:
|
||||
/* Return to application */
|
||||
return status;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
#if !defined(ARM_MATH_MVEI)
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
|
||||
#else
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,235 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c
|
||||
* Description: Fast Q7 version of 1x1 convolution (non-square shape)
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
|
||||
* and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise
|
||||
* separable convolution.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some constraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*
|
||||
* [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
||||
* https://arxiv.org/abs/1704.04861
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
(void)dim_im_in_y;
|
||||
int16_t i_out_y, i_out_x;
|
||||
int16_t i_ch_out;
|
||||
|
||||
/* -----------------------
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 || padding_x != 0 ||
|
||||
padding_y != 0 || stride_x != 1 || stride_y != 1)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
pBuffer += ch_im_in;
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if there is left-over for compute */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
||||
{
|
||||
q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = bufferA;
|
||||
/* basically each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
pOut++;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 || padding_x != 0 ||
|
||||
padding_y != 0 || stride_x != 1 || stride_y != 1)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in +
|
||||
l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,161 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_1x1_s8_fast.c
|
||||
* Description: Fast q7 version of 1x1 convolution (non-square shape)
|
||||
*
|
||||
* $Date: 12. November 2021
|
||||
* $Revision: V.2.0.4
|
||||
*
|
||||
* Target Processor: Cortex-M Processors
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
#include <stdio.h>
|
||||
|
||||
#define DIM_KER_X (1U)
|
||||
#define DIM_KER_Y (1U)
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Fast s8 version for 1x1 convolution (non-square shape)
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
if (input_dims->c % 4 != 0 || conv_params->padding.w != 0 || conv_params->padding.h != 0 ||
|
||||
conv_params->stride.w != 1 || conv_params->stride.h != 1)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
(void)ctx;
|
||||
(void)filter_dims;
|
||||
(void)bias_dims;
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
const int32_t col_len = input_dims->w * input_dims->h * input_dims->n;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t input_offset = conv_params->input_offset;
|
||||
const int32_t out_offset = conv_params->output_offset;
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
for (int i_items = 0; i_items <= (col_len - 4); i_items += 4)
|
||||
{
|
||||
|
||||
output_data = arm_nn_mat_mul_core_4x_s8(input_ch,
|
||||
input_ch,
|
||||
input_data + i_items * input_ch,
|
||||
filter_data,
|
||||
output_ch,
|
||||
conv_params,
|
||||
quant_params,
|
||||
bias_data,
|
||||
output_data);
|
||||
}
|
||||
|
||||
/* Handle left over elements */
|
||||
for (int i_items = (col_len & ~0x3); i_items < col_len; i_items++)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t sum_row = 0;
|
||||
int32_t acc;
|
||||
(void)arm_nn_mat_mul_core_1x_s8(
|
||||
input_ch, input_data + i_items * input_ch, filter_data + i_out_ch * input_ch, &sum_row, &acc);
|
||||
if (bias_data)
|
||||
{
|
||||
acc += bias_data[i_out_ch];
|
||||
}
|
||||
sum_row = (sum_row * input_offset);
|
||||
acc += sum_row;
|
||||
acc = arm_nn_requantize(acc, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
acc += out_offset;
|
||||
|
||||
acc = MAX(acc, out_activation_min);
|
||||
acc = MIN(acc, out_activation_max);
|
||||
*output_data++ = acc;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M processors with or without DSP extension */
|
||||
|
||||
const int32_t lhs_rows = input_dims->w * input_dims->h * input_dims->n;
|
||||
const int32_t rhs_rows = output_dims->c;
|
||||
const int32_t rhs_cols = input_dims->c;
|
||||
|
||||
arm_nn_mat_mult_nt_t_s8(input_data,
|
||||
filter_data,
|
||||
bias_data,
|
||||
output_data,
|
||||
quant_params->multiplier,
|
||||
quant_params->shift,
|
||||
lhs_rows,
|
||||
rhs_rows,
|
||||
rhs_cols,
|
||||
conv_params->input_offset,
|
||||
conv_params->output_offset,
|
||||
conv_params->activation.min,
|
||||
conv_params->activation.max);
|
||||
|
||||
#endif
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims)
|
||||
{
|
||||
(void)input_dims;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,209 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q15_basic.c
|
||||
* Description: Q15 version of convolution
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q15 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* This basic version is designed to work for any input tensor and weight
|
||||
* dimension.
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q15_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t *Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
uint16_t im2col_out_pixel_index = 0;
|
||||
q15_t *pBuffer = bufferA;
|
||||
q15_t *pOut = Im_out;
|
||||
q15_t *im_buffer = bufferA;
|
||||
const q15_t *pA;
|
||||
int i;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer,
|
||||
* ch_im_in); */
|
||||
memcpy(pBuffer,
|
||||
(q15_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in,
|
||||
sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
pA = wt;
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = im_buffer;
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inA2 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q15_t)__SSAT((sum >> out_shift), 16);
|
||||
pOut++;
|
||||
}
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = im_buffer;
|
||||
im2col_out_pixel_index++;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t)__SSAT((conv_out >> out_shift), 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,259 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q15_fast.c
|
||||
* Description: Fast Q15 version of convolution
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q15 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 2
|
||||
*
|
||||
* ch_im_out is multiple of 2
|
||||
*
|
||||
* dim_im_out is a multiple of 2
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q15_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t *Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q15_t *im_buffer = bufferA;
|
||||
q15_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0 || dim_im_out & 0x1)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer,
|
||||
* ch_im_in); */
|
||||
memcpy(pBuffer,
|
||||
(q15_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in,
|
||||
sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (i_out_x & 0x1)
|
||||
{
|
||||
int i;
|
||||
/* initialize the matrix pointers for A */
|
||||
const q15_t *pA = wt;
|
||||
|
||||
/* set up the second output pointers */
|
||||
q15_t *pOut2 = pOut + ch_im_out;
|
||||
|
||||
/* this loop over rows in A */
|
||||
for (i = 0; i < ch_im_out; i += 2)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = im_buffer;
|
||||
const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel;
|
||||
|
||||
/* aling the second pointer for A */
|
||||
const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 1;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inA2 = arm_nn_read_q15x2_ia(&pA2);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum2 = __SMLAD(inA1, inB2, sum2);
|
||||
sum3 = __SMLAD(inA2, inB1, sum3);
|
||||
sum4 = __SMLAD(inA2, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q15_t)__SSAT(sum >> out_shift, 16);
|
||||
*pOut++ = (q15_t)__SSAT(sum3 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t)__SSAT(sum2 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t)__SSAT(sum4 >> out_shift, 16);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += ch_im_in * dim_kernel * dim_kernel;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
pOut += ch_im_out;
|
||||
/* counter reset */
|
||||
pBuffer = im_buffer;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t)__SSAT((conv_out >> out_shift), 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,270 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q15_fast.c
|
||||
* Description: Fast Q15 version of convolution
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q15 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 2
|
||||
*
|
||||
* ch_im_out is multiple of 2
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q15_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q15_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q15_t *Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q15_t *im_buffer = bufferA;
|
||||
q15_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer,
|
||||
* ch_im_in); */
|
||||
memcpy(pBuffer,
|
||||
(q15_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
|
||||
sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (i_out_x & 0x1)
|
||||
{
|
||||
int i;
|
||||
/* initialize the matrix pointers for A */
|
||||
const q15_t *pA = wt;
|
||||
|
||||
/* set up the second output pointers */
|
||||
q15_t *pOut2 = pOut + ch_im_out;
|
||||
|
||||
/* this loop over rows in A */
|
||||
for (i = 0; i < ch_im_out; i += 2)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = im_buffer;
|
||||
const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x;
|
||||
|
||||
/* aling the second pointer for A */
|
||||
const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1 = arm_nn_read_q15x2_ia(&pA);
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inA2 = arm_nn_read_q15x2_ia(&pA2);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
sum2 = __SMLAD(inA1, inB2, sum2);
|
||||
sum3 = __SMLAD(inA2, inB1, sum3);
|
||||
sum4 = __SMLAD(inA2, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q15_t)__SSAT(sum >> out_shift, 16);
|
||||
*pOut++ = (q15_t)__SSAT(sum3 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t)__SSAT(sum2 >> out_shift, 16);
|
||||
*pOut2++ = (q15_t)__SSAT(sum4 >> out_shift, 16);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += ch_im_in * dim_kernel_y * dim_kernel_x;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
pOut += ch_im_out;
|
||||
/* counter reset */
|
||||
pBuffer = im_buffer;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + n) * ch_im_in +
|
||||
l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t)__SSAT((conv_out >> out_shift), 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,280 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_RGB.c
|
||||
* Description: Q7 version of convolution for RGB image
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 convolution function for RGB image
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in equals 3
|
||||
*
|
||||
* This kernel is written exclusively for convolution with ch_im_in
|
||||
* equals 3. This applies on the first layer of CNNs which has input
|
||||
* image with RGB format.
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
// check if number of input channels is 3
|
||||
if (ch_im_in != 3)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
// This part implements the im2col function
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */
|
||||
arm_memset_q7((q7_t *)pBuffer, (q7_t)0, 3 * sizeof(q15_t));
|
||||
pBuffer += 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* Equivalent to:
|
||||
* arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3);
|
||||
*/
|
||||
|
||||
const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3;
|
||||
q31_t buf = arm_nn_read_q7x4(pPixel);
|
||||
|
||||
union arm_nnword top;
|
||||
union arm_nnword bottom;
|
||||
|
||||
top.word = __SXTB16(buf);
|
||||
bottom.word = __SXTB16(__ROR(buf, 8));
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
/*
|
||||
* little-endian, | omit | 3rd | 2nd | 1st |
|
||||
* MSB LSB
|
||||
* top | 3rd | 1st |; bottom | omit | 2nd |
|
||||
*
|
||||
* version 1, need to swap 2nd and 3rd weight
|
||||
* *__SIMD32(pBuffer) = top.word;
|
||||
* *(pBuffer+2) = bottom.half_words[0];
|
||||
*
|
||||
* version 2, no weight shuffling required
|
||||
*/
|
||||
*pBuffer++ = top.half_words[0];
|
||||
int32_t packed_word = __PKHBT(bottom.word, top.word, 0);
|
||||
arm_memcpy_q7((q7_t *)pBuffer, (q7_t *)&packed_word, 4);
|
||||
#else
|
||||
/*
|
||||
* big-endian, | 1st | 2nd | 3rd | omit |
|
||||
* MSB LSB
|
||||
* top | 2nd | omit |; bottom | 1st | 3rd |
|
||||
*
|
||||
* version 1, need to swap 2nd and 3rd weight
|
||||
* *__SIMD32(pBuffer) = bottom.word;
|
||||
* *(pBuffer+2) = top.half_words[1];
|
||||
*
|
||||
* version 2, no weight shuffling required
|
||||
*/
|
||||
*pBuffer++ = bottom.half_words[0];
|
||||
int32_t packed_word = __PKHTB(top.word, bottom.word, 0);
|
||||
arm_memcpy_q7((q7_t *)pBuffer, (q7_t *)&packed_word, 4);
|
||||
#endif
|
||||
pBuffer += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15(
|
||||
wt, bufferA, ch_im_out, 3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
q15_t *pB = bufferA;
|
||||
/* basically each time it process 4 entries */
|
||||
uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia((const q15_t **)&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia((const q15_t **)&pB);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = 3 * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
// check if number of input channels is 3
|
||||
if (ch_im_in != 3)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
/* if-for implementation */
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,227 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_basic.c
|
||||
* Description: Q7 version of convolution
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q7 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* This basic version is designed to work for any input tensor and weight
|
||||
* dimension.
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Copying the pixel data to column */
|
||||
arm_q7_to_q15_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
/* Load the accumulator with bias first */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
/* Point to the beging of the im2col buffer */
|
||||
const q15_t *pB = bufferA;
|
||||
|
||||
/* Each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
(void)bufferA;
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,229 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_basic.c
|
||||
* Description: Q7 version of convolution
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Basic Q7 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Copying the pixel data to column */
|
||||
arm_q7_to_q15_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut);
|
||||
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
/* Load the accumulator with bias first */
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
/* Point to the beging of the im2col buffer */
|
||||
const q15_t *pB = bufferA;
|
||||
|
||||
/* Each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
(void)bufferA;
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in +
|
||||
l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,380 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_fast.c
|
||||
* Description: Fast Q7 version of convolution
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
|
||||
*
|
||||
* ch_im_out is multiple of 2 ( bacause 2x2 mat_mult kernel )
|
||||
*
|
||||
* The im2col converts the Q7 tensor input into Q15 column, which is stored in
|
||||
* bufferA. There is reordering happenning during this im2col process with
|
||||
* arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
|
||||
* third elements are swapped.
|
||||
*
|
||||
* The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
|
||||
* GEMM computation with the reordered columns.
|
||||
*
|
||||
* To speed-up the determination of the padding condition, we split the
|
||||
* computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
|
||||
* This reduces the total number of boundary condition checks and improves
|
||||
* the data copying performance.
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/*
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here we split the entire matrix into three regions depending on the padding situation
|
||||
* Top: i_out_y from 0 to padding - 1
|
||||
* Middle: i_out_y from padding to dim_im_out-padding-1
|
||||
* Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
|
||||
*/
|
||||
|
||||
/* top part */
|
||||
for (i_out_y = 0; i_out_y < padding; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* middle part, here we also divide the x into left, mid and right */
|
||||
for (; i_out_y < dim_im_out - padding; i_out_y++)
|
||||
{
|
||||
|
||||
/* left part */
|
||||
for (i_out_x = 0; i_out_x < padding; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* mid part */
|
||||
for (; i_out_x < dim_im_out - padding; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift((q7_t *)Im_in +
|
||||
(i_ker_y * dim_im_in + i_out_x * stride - padding) * ch_im_in,
|
||||
pBuffer,
|
||||
ch_im_in * dim_kernel);
|
||||
pBuffer += ch_im_in * dim_kernel;
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* right part */
|
||||
for (; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if there is left-over for compute */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = bufferA;
|
||||
/* each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
pOut++;
|
||||
}
|
||||
}
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out; k++)
|
||||
{
|
||||
conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel; n++)
|
||||
{
|
||||
// if-for implementation
|
||||
in_row = stride * j + m - padding;
|
||||
in_col = stride * k + n - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + n) * ch_im_in + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,378 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_HWC_q7_fast_nonsquare.c
|
||||
* Description: Fast Q7 version of convolution (non-sqaure shape)
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Fast Q7 convolution function (non-sqaure shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimention x
|
||||
* @param[in] dim_im_in_y input tensor dimention y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding size x
|
||||
* @param[in] padding_y padding size y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some constraints:
|
||||
* ch_im_in is multiple of 4
|
||||
* ch_im_out is multiple of 2
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/* -----------------------
|
||||
* Here we use bufferA as q15_t internally as computation are done with q15_t level
|
||||
* im2col are done to output in q15_t format from q7_t input
|
||||
*/
|
||||
|
||||
q15_t *pBuffer = bufferA;
|
||||
q7_t *pOut = Im_out;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here we split the entire matrix into three regions depending on the padding situation
|
||||
* Top: i_out_y from 0 to padding - 1
|
||||
* Middle: i_out_y from padding to dim_im_out-padding-1
|
||||
* Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
|
||||
*/
|
||||
|
||||
/* top part */
|
||||
for (i_out_y = 0; i_out_y < padding_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* middle part, here we also divide the x into left, mid and right */
|
||||
for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)
|
||||
{
|
||||
|
||||
/* left part */
|
||||
for (i_out_x = 0; i_out_x < padding_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* mid part */
|
||||
for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,
|
||||
pBuffer,
|
||||
ch_im_in * dim_kernel_x);
|
||||
pBuffer += ch_im_in * dim_kernel_x;
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
|
||||
/* right part */
|
||||
for (; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* This part implements the im2col function */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q15(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, sizeof(q15_t) * ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_reordered_no_shift(
|
||||
(q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
|
||||
{
|
||||
pOut = arm_nn_mat_mult_kernel_q7_q15_reordered(
|
||||
wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, bias_shift, out_shift, bias, pOut);
|
||||
/* counter reset */
|
||||
pBuffer = bufferA;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if there is left-over for compute */
|
||||
if (pBuffer != bufferA)
|
||||
{
|
||||
const q7_t *pA = wt;
|
||||
int i;
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
const q15_t *pB = bufferA;
|
||||
/* basically each time it process 4 entries */
|
||||
uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q31_t inA1, inA2;
|
||||
q31_t inB1, inB2;
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA1, &inA2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA1, inB1, sum);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inA2, inB2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
sum += inA1 * inB1;
|
||||
colCnt--;
|
||||
}
|
||||
*pOut = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
pOut++;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i, j, k, l, m, n;
|
||||
int conv_out;
|
||||
int in_row, in_col;
|
||||
|
||||
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
|
||||
{
|
||||
/* check if the input dimension meets the constraints */
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i = 0; i < ch_im_out; i++)
|
||||
{
|
||||
for (j = 0; j < dim_im_out_y; j++)
|
||||
{
|
||||
for (k = 0; k < dim_im_out_x; k++)
|
||||
{
|
||||
conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (m = 0; m < dim_kernel_y; m++)
|
||||
{
|
||||
for (n = 0; n < dim_kernel_x; n++)
|
||||
{
|
||||
/* if-for implementation */
|
||||
in_row = stride_y * j + m - padding_y;
|
||||
in_col = stride_x * k + n - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
for (l = 0; l < ch_im_in; l++)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
|
||||
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in +
|
||||
l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,241 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_fast_s16.c
|
||||
* Description: Optimized s16 version of convolution.
|
||||
*
|
||||
* $Date: 12 August 2021
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Basic s16 convolution function.
|
||||
*
|
||||
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
|
||||
* are multiples of 4 or atleast greater than 4.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q15_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int64_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q15_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
if (filter_dims->w * filter_dims->h * input_dims->c >= 512)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q15_t *buffer_a = (q15_t *)ctx->buf;
|
||||
|
||||
const int32_t input_batches = input_dims->n;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
|
||||
const int32_t pad_x = conv_params->padding.w;
|
||||
const int32_t pad_y = conv_params->padding.h;
|
||||
const int32_t stride_x = conv_params->stride.w;
|
||||
const int32_t stride_y = conv_params->stride.h;
|
||||
|
||||
const int16_t out_activation_min = conv_params->activation.min;
|
||||
const int16_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Generate two columns from the input tensor a GEMM computation */
|
||||
q15_t *two_column_buf = buffer_a;
|
||||
q15_t *out = output_data;
|
||||
/* This part implements the im2col function */
|
||||
for (int32_t i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
for (int32_t i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
for (int32_t i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (int32_t i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
arm_memset_q7((q7_t *)two_column_buf, 0, sizeof(q15_t) * input_ch);
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_memcpy_q7((q7_t *)two_column_buf,
|
||||
(const q7_t *)(input_data + (i_ker_y * input_x + i_ker_x) * input_ch),
|
||||
input_ch * sizeof(q15_t));
|
||||
}
|
||||
two_column_buf += input_ch;
|
||||
}
|
||||
}
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
|
||||
{
|
||||
out = arm_nn_mat_mult_kernel_s16(filter_data,
|
||||
buffer_a,
|
||||
output_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
(input_ch * kernel_y * kernel_x),
|
||||
bias_data,
|
||||
out);
|
||||
|
||||
/* Counter reset */
|
||||
two_column_buf = buffer_a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Left-over because odd number of output pixels */
|
||||
if (two_column_buf != buffer_a)
|
||||
{
|
||||
const q7_t *ker_a = filter_data;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < output_ch; i++)
|
||||
{
|
||||
/* Init the accumulator*/
|
||||
q31_t sum = 0;
|
||||
|
||||
/* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
|
||||
const q15_t *ip_as_col = buffer_a;
|
||||
|
||||
/* 4 multiply and accumulates are done in one loop. */
|
||||
uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
|
||||
|
||||
while (col_count)
|
||||
{
|
||||
q31_t ker_a1, ker_a2;
|
||||
q31_t ip_b1, ip_b2;
|
||||
|
||||
ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
|
||||
|
||||
ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
|
||||
sum = __SMLAD(ker_a1, ip_b1, sum);
|
||||
ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
|
||||
sum = __SMLAD(ker_a2, ip_b2, sum);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
/* Handle left over mac */
|
||||
col_count = input_ch * kernel_y * kernel_x & 0x3;
|
||||
while (col_count)
|
||||
{
|
||||
q7_t ker_a1 = *ker_a++;
|
||||
q15_t ip_b1 = *ip_as_col++;
|
||||
sum += ker_a1 * ip_b1;
|
||||
col_count--;
|
||||
}
|
||||
if (bias_data)
|
||||
{
|
||||
q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i]);
|
||||
q63_t acc_64 = sum + bias_data[i];
|
||||
sum = arm_nn_requantize_s64(acc_64, reduced_multiplier, output_shift[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
|
||||
}
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
*out++ = (q15_t)sum;
|
||||
}
|
||||
}
|
||||
#else
|
||||
(void)input_data;
|
||||
(void)output_data;
|
||||
(void)bias_data;
|
||||
(void)filter_data;
|
||||
(void)buffer_a;
|
||||
(void)kernel_x;
|
||||
(void)kernel_y;
|
||||
(void)pad_x;
|
||||
(void)pad_y;
|
||||
(void)stride_x;
|
||||
(void)stride_y;
|
||||
(void)out_activation_min;
|
||||
(void)out_activation_max;
|
||||
(void)output_mult;
|
||||
(void)output_shift;
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
#endif
|
||||
/* Advance to the next batch */
|
||||
input_data += (input_x * input_y * input_ch);
|
||||
output_data += (output_x * output_y * output_ch);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
|
||||
#else
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
156
Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s16.c
Normal file
156
Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s16.c
Normal file
@@ -0,0 +1,156 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_s16.c
|
||||
* Description: s16 version of convolution using symmetric quantization.
|
||||
*
|
||||
* $Date: January 13, 2022
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Basic s16 convolution function.
|
||||
*
|
||||
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
|
||||
* are multiples of 4 or atleast greater than 4.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q15_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int64_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q15_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
(void)ctx;
|
||||
|
||||
const int32_t input_batches = input_dims->n;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
|
||||
const int32_t pad_x = conv_params->padding.w;
|
||||
const int32_t pad_y = conv_params->padding.h;
|
||||
const int32_t stride_x = conv_params->stride.w;
|
||||
const int32_t stride_y = conv_params->stride.h;
|
||||
const int32_t dilation_x = conv_params->dilation.w;
|
||||
const int32_t dilation_y = conv_params->dilation.h;
|
||||
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (int32_t i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i_out_ch]);
|
||||
|
||||
for (int32_t base_idx_y = -pad_y, i_out_y = 0; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
|
||||
{
|
||||
for (int32_t base_idx_x = -pad_x, i_out_x = 0; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
|
||||
{
|
||||
int64_t conv_out_acc = 0;
|
||||
|
||||
const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
|
||||
const int32_t ker_y_start = MAX(0, start_y_max);
|
||||
const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
|
||||
const int32_t ker_x_start = MAX(0, start_x_max);
|
||||
const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
|
||||
const int32_t ker_y_end = MIN(kernel_y, end_min_y);
|
||||
const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
|
||||
const int32_t ker_x_end = MIN(kernel_x, end_min_x);
|
||||
|
||||
for (int32_t i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
for (int32_t i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t in_row = base_idx_y + dilation_y * i_ker_y;
|
||||
const int32_t in_col = base_idx_x + dilation_x * i_ker_x;
|
||||
|
||||
for (int32_t i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
conv_out_acc += input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] *
|
||||
filter_data[i_out_ch * input_ch * kernel_y * kernel_x +
|
||||
(i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bias_data)
|
||||
{
|
||||
conv_out_acc += bias_data[i_out_ch];
|
||||
}
|
||||
|
||||
int32_t conv_out = arm_nn_requantize_s64(conv_out_acc, reduced_multiplier, output_shift[i_out_ch]);
|
||||
conv_out = MAX(conv_out, out_activation_min);
|
||||
conv_out = MIN(conv_out, out_activation_max);
|
||||
output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int16_t)conv_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Advance to the next batch */
|
||||
input_data += (input_x * input_y * input_ch);
|
||||
output_data += (output_x * output_y * output_ch);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
335
Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
Normal file
335
Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
Normal file
@@ -0,0 +1,335 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_s8.c
|
||||
* Description: s8 version of convolution using symmetric quantization.
|
||||
*
|
||||
* $Date: December 14, 2021
|
||||
* $Revision: V.2.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Basic s8 convolution function.
|
||||
*
|
||||
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
|
||||
* are multiples of 4 or atleast greater than 4.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
|
||||
if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q15_t *buffer_a = (q15_t *)ctx->buf;
|
||||
|
||||
const int32_t input_batches = input_dims->n;
|
||||
const uint16_t input_x = input_dims->w;
|
||||
const uint16_t input_y = input_dims->h;
|
||||
const uint16_t input_ch = input_dims->c;
|
||||
const uint16_t kernel_x = filter_dims->w;
|
||||
const uint16_t kernel_y = filter_dims->h;
|
||||
const uint16_t output_x = output_dims->w;
|
||||
const uint16_t output_y = output_dims->h;
|
||||
const uint16_t output_ch = output_dims->c;
|
||||
|
||||
const uint16_t pad_x = conv_params->padding.w;
|
||||
const uint16_t pad_y = conv_params->padding.h;
|
||||
const uint16_t stride_x = conv_params->stride.w;
|
||||
const uint16_t stride_y = conv_params->stride.h;
|
||||
|
||||
const int32_t input_offset = conv_params->input_offset;
|
||||
const int32_t out_offset = conv_params->output_offset;
|
||||
const int32_t out_activation_min = conv_params->activation.min;
|
||||
const int32_t out_activation_max = conv_params->activation.max;
|
||||
int32_t *output_mult = quant_params->multiplier;
|
||||
int32_t *output_shift = quant_params->shift;
|
||||
|
||||
int i_batch;
|
||||
for (i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
/* Generate upto four columns from the input tensor a GEMM computation */
|
||||
q7_t *im2col_buf = (q7_t *)buffer_a;
|
||||
q7_t *out = output_data;
|
||||
int32_t buffer_fill_cnt = 0;
|
||||
int32_t padded = 0;
|
||||
const int32_t num_elem = kernel_x * kernel_y * input_ch;
|
||||
const int32_t dilation_x = conv_params->dilation.w;
|
||||
const int32_t dilation_y = conv_params->dilation.h;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int32_t base_idx_x = stride_x * i_out_x - pad_x;
|
||||
const int32_t base_idx_y = stride_y * i_out_y - pad_y;
|
||||
|
||||
for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
|
||||
{
|
||||
for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
|
||||
{
|
||||
const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
|
||||
const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
|
||||
|
||||
if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
|
||||
{
|
||||
memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
|
||||
padded = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_memcpy_q7(im2col_buf, input_data + (k_y * input_x + k_x) * input_ch, input_ch);
|
||||
}
|
||||
im2col_buf += input_ch;
|
||||
}
|
||||
}
|
||||
|
||||
buffer_fill_cnt++;
|
||||
|
||||
/* Computation is filed for every 4 columns */
|
||||
if (buffer_fill_cnt == 4 && (padded == 0))
|
||||
{
|
||||
buffer_fill_cnt = 0;
|
||||
out = arm_nn_mat_mul_core_4x_s8(num_elem,
|
||||
num_elem,
|
||||
(q7_t *)buffer_a,
|
||||
filter_data,
|
||||
output_ch,
|
||||
conv_params,
|
||||
quant_params,
|
||||
bias_data,
|
||||
out);
|
||||
im2col_buf = (q7_t *)buffer_a;
|
||||
}
|
||||
else if (buffer_fill_cnt == 4 && (padded != 0))
|
||||
{
|
||||
buffer_fill_cnt = 0;
|
||||
out = arm_nn_mat_mult_s8(filter_data,
|
||||
(q7_t *)buffer_a,
|
||||
output_ch,
|
||||
4,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_offset,
|
||||
input_offset,
|
||||
0,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
num_elem,
|
||||
bias_data,
|
||||
out);
|
||||
|
||||
im2col_buf = (q7_t *)buffer_a;
|
||||
padded = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Handle left over columns */
|
||||
if (buffer_fill_cnt != 0)
|
||||
{
|
||||
out = arm_nn_mat_mult_s8(filter_data,
|
||||
(q7_t *)buffer_a,
|
||||
output_ch,
|
||||
buffer_fill_cnt,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_offset,
|
||||
input_offset,
|
||||
0,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
num_elem,
|
||||
bias_data,
|
||||
out);
|
||||
}
|
||||
#else // #if defined(ARM_MATH_MVEI)
|
||||
const uint16_t dilation_x = conv_params->dilation.w;
|
||||
const uint16_t dilation_y = conv_params->dilation.h;
|
||||
|
||||
int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;
|
||||
|
||||
/* Generate two columns from the input tensor a GEMM computation */
|
||||
q15_t *two_column_buf = buffer_a;
|
||||
q7_t *out = output_data;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int32_t base_idx_y = stride_y * i_out_y - pad_y;
|
||||
const int32_t base_idx_x = stride_x * i_out_x - pad_x;
|
||||
|
||||
for (i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
|
||||
{
|
||||
const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
|
||||
const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
|
||||
|
||||
if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
|
||||
{
|
||||
/* Filling 0 for out-of-bound paddings */
|
||||
memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Copying the pixel data to column */
|
||||
arm_q7_to_q15_with_offset(
|
||||
input_data + (k_y * input_x + k_x) * input_ch, two_column_buf, input_ch, input_offset);
|
||||
}
|
||||
two_column_buf += input_ch;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computation is filed for every 2 columns */
|
||||
if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
|
||||
{
|
||||
out = arm_nn_mat_mult_kernel_s8_s16(filter_data,
|
||||
buffer_a,
|
||||
output_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
out_offset,
|
||||
out_activation_min,
|
||||
out_activation_max,
|
||||
input_ch * kernel_y * kernel_x,
|
||||
bias_data,
|
||||
out);
|
||||
|
||||
/* counter reset */
|
||||
two_column_buf = buffer_a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* left-over because odd number of output pixels */
|
||||
if (two_column_buf != buffer_a)
|
||||
{
|
||||
const q7_t *ker_a = filter_data;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < output_ch; i++)
|
||||
{
|
||||
/* Load the accumulator with bias first */
|
||||
q31_t sum = 0;
|
||||
if (bias_data)
|
||||
{
|
||||
sum = bias_data[i];
|
||||
}
|
||||
|
||||
/* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
|
||||
const q15_t *ip_as_col = buffer_a;
|
||||
|
||||
/* 4 multiply and accumulates are done in one loop. */
|
||||
#if defined(ARM_MATH_DSP)
|
||||
uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
|
||||
|
||||
while (col_count)
|
||||
{
|
||||
q31_t ker_a1, ker_a2;
|
||||
q31_t ip_b1, ip_b2;
|
||||
|
||||
ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
|
||||
|
||||
ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
|
||||
sum = __SMLAD(ker_a1, ip_b1, sum);
|
||||
ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
|
||||
sum = __SMLAD(ker_a2, ip_b2, sum);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
/* Handle left over mac */
|
||||
col_count = input_ch * kernel_y * kernel_x & 0x3;
|
||||
#else
|
||||
uint16_t col_count = input_ch * kernel_y * kernel_x;
|
||||
#endif
|
||||
while (col_count)
|
||||
{
|
||||
q7_t ker_a1 = *ker_a++;
|
||||
q15_t ip_b1 = *ip_as_col++;
|
||||
sum += ker_a1 * ip_b1;
|
||||
col_count--;
|
||||
}
|
||||
|
||||
sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
|
||||
sum += out_offset;
|
||||
sum = MAX(sum, out_activation_min);
|
||||
sum = MIN(sum, out_activation_max);
|
||||
*out++ = (q7_t)sum;
|
||||
}
|
||||
}
|
||||
#endif // #if defined(ARM_MATH_MVEI)
|
||||
/* Advance to the next batch */
|
||||
input_data += (input_x * input_y * input_ch);
|
||||
output_data += (output_x * output_y * output_ch);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t col_length = input_dims->c * filter_dims->w * filter_dims->h;
|
||||
// Get number of complete int16 lanes(multiple of 8) for given col_length. This is dependent on
|
||||
// implementation of arm_nn_mat_mult_s8
|
||||
col_length = (col_length + 7) / 8;
|
||||
// 4 -> number of im2col buffers, 8 -> 8 elements per Q register
|
||||
return 4 * col_length * 8 * (int32_t)sizeof(int8_t);
|
||||
#else
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,130 @@
|
||||
/*
|
||||
* Copyright (C) 2021-2022 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_wrapper_s16.c
|
||||
* Description: s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in
|
||||
* cmsis-nn to perform the convolution.
|
||||
*
|
||||
* $Date: 13 January 2022
|
||||
* $Revision: V.1.2.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Convolution layer
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q15_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int64_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q15_t *output_data)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
if (filter_dims->w * filter_dims->h * input_dims->c < 512 &&
|
||||
(conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
||||
{
|
||||
return arm_convolve_fast_s16(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
else
|
||||
{
|
||||
return arm_convolve_s16(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
#else
|
||||
return arm_convolve_s16(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
#endif
|
||||
}
|
||||
|
||||
int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims)
|
||||
{
|
||||
(void)conv_params;
|
||||
(void)output_dims;
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
if (filter_dims->w * filter_dims->h * input_dims->c < 512 &&
|
||||
(conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
||||
{
|
||||
return arm_convolve_fast_s16_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
|
||||
return arm_convolve_s16_get_buffer_size(input_dims, filter_dims);
|
||||
#else
|
||||
return arm_convolve_s16_get_buffer_size(input_dims, filter_dims);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,133 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_convolve_wrapper_s8.c
|
||||
* Description: s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
|
||||
* cmsis-nn to perform the convolution.
|
||||
*
|
||||
* $Date: 02. December 2021
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Convolution layer
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
|
||||
(conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
|
||||
(filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
||||
{
|
||||
return arm_convolve_1x1_s8_fast(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
|
||||
(input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
||||
{
|
||||
return arm_convolve_1_x_n_s8(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
else
|
||||
{
|
||||
return arm_convolve_s8(ctx,
|
||||
conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input_data,
|
||||
filter_dims,
|
||||
filter_data,
|
||||
bias_dims,
|
||||
bias_data,
|
||||
output_dims,
|
||||
output_data);
|
||||
}
|
||||
}
|
||||
|
||||
int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims)
|
||||
{
|
||||
if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
|
||||
(conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
|
||||
(filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
||||
{
|
||||
return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims);
|
||||
}
|
||||
else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
|
||||
(input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
||||
{
|
||||
return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
else
|
||||
{
|
||||
return arm_convolve_s8_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,212 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_3x3_s8.c
|
||||
* Description: Optimized s8 depthwise convolution function for channel
|
||||
* multiplier of 1 and 3x3 kernel size.
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.2.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Optimized s8 depthwise convolution function with constraint that
|
||||
* in_channel == out_channel and kernel_x == kernel_y == 3 with pads at most 1
|
||||
*
|
||||
* Refer prototype header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
(void)ctx;
|
||||
(void)bias_dims;
|
||||
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
const int32_t pad_x = dw_conv_params->padding.w;
|
||||
const int32_t pad_y = dw_conv_params->padding.h;
|
||||
const int32_t stride_x = dw_conv_params->stride.w;
|
||||
const int32_t stride_y = dw_conv_params->stride.h;
|
||||
const int32_t *output_shift = quant_params->shift;
|
||||
const int32_t *output_mult = quant_params->multiplier;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_offset = dw_conv_params->output_offset;
|
||||
const int32_t input_offset = dw_conv_params->input_offset;
|
||||
const int32_t output_activation_min = dw_conv_params->activation.min;
|
||||
const int32_t output_activation_max = dw_conv_params->activation.max;
|
||||
|
||||
/* Check input constraints input_ch == output_ch */
|
||||
if (input_ch != output_ch)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
/* Check input constraints pad_x <= 1 */
|
||||
if (pad_x > 1 || filter_dims->w != 3 || filter_dims->h != 3)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
int32_t in_ch = 0;
|
||||
int32_t ker_w_start = MAX(0, -in_w);
|
||||
|
||||
for (; in_ch <= (input_ch - 4); in_ch += 4)
|
||||
{
|
||||
int32_t out_buff0 = bias[in_ch + 0];
|
||||
int32_t out_buff1 = bias[in_ch + 1];
|
||||
int32_t out_buff2 = bias[in_ch + 2];
|
||||
int32_t out_buff3 = bias[in_ch + 3];
|
||||
|
||||
const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t in_val = 0;
|
||||
int32_t ker_val = 0;
|
||||
|
||||
if (ker_w_start == 0)
|
||||
{
|
||||
in_val = arm_nn_read_q7x4(input_ptr);
|
||||
ker_val = arm_nn_read_q7x4(kernel_ptr);
|
||||
|
||||
out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
|
||||
out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
|
||||
out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
|
||||
out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
|
||||
}
|
||||
|
||||
in_val = arm_nn_read_q7x4(input_ptr + input_ch);
|
||||
ker_val = arm_nn_read_q7x4(kernel_ptr + input_ch);
|
||||
|
||||
out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
|
||||
out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
|
||||
out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
|
||||
out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
|
||||
|
||||
if ((input_x - in_w) >= 3)
|
||||
{
|
||||
in_val = arm_nn_read_q7x4(input_ptr + (input_ch << 1));
|
||||
ker_val = arm_nn_read_q7x4(kernel_ptr + (input_ch << 1));
|
||||
|
||||
out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val;
|
||||
out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8);
|
||||
out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16);
|
||||
out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24);
|
||||
}
|
||||
|
||||
input_ptr += (input_ch * input_x);
|
||||
kernel_ptr += (input_ch * 3);
|
||||
}
|
||||
|
||||
out_buff0 = arm_nn_requantize(out_buff0, output_mult[in_ch + 0], output_shift[in_ch + 0]);
|
||||
out_buff1 = arm_nn_requantize(out_buff1, output_mult[in_ch + 1], output_shift[in_ch + 1]);
|
||||
out_buff2 = arm_nn_requantize(out_buff2, output_mult[in_ch + 2], output_shift[in_ch + 2]);
|
||||
out_buff3 = arm_nn_requantize(out_buff3, output_mult[in_ch + 3], output_shift[in_ch + 3]);
|
||||
|
||||
out_buff0 += output_offset;
|
||||
out_buff1 += output_offset;
|
||||
out_buff2 += output_offset;
|
||||
out_buff3 += output_offset;
|
||||
|
||||
out_buff0 = MIN(MAX(out_buff0, output_activation_min), output_activation_max);
|
||||
out_buff1 = MIN(MAX(out_buff1, output_activation_min), output_activation_max);
|
||||
out_buff2 = MIN(MAX(out_buff2, output_activation_min), output_activation_max);
|
||||
out_buff3 = MIN(MAX(out_buff3, output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (int8_t)out_buff0;
|
||||
output[out_idx++] = (int8_t)out_buff1;
|
||||
output[out_idx++] = (int8_t)out_buff2;
|
||||
output[out_idx++] = (int8_t)out_buff3;
|
||||
}
|
||||
|
||||
// Leftover
|
||||
for (; in_ch < input_ch; ++in_ch)
|
||||
{
|
||||
int32_t out_buff = bias[in_ch];
|
||||
|
||||
const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch;
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h)
|
||||
{
|
||||
if (ker_w_start == 0)
|
||||
{
|
||||
out_buff += (*(input_ptr) + input_offset) * *(kernel_ptr);
|
||||
}
|
||||
|
||||
out_buff += (*(input_ptr + input_ch) + input_offset) * *(kernel_ptr + input_ch);
|
||||
|
||||
if ((input_x - in_w) >= 3)
|
||||
{
|
||||
out_buff += (*(input_ptr + (input_ch << 1)) + input_offset) * *(kernel_ptr + (input_ch << 1));
|
||||
}
|
||||
|
||||
input_ptr += (input_ch * input_x);
|
||||
kernel_ptr += (input_ch * 3);
|
||||
}
|
||||
|
||||
out_buff = arm_nn_requantize(out_buff, output_mult[in_ch], output_shift[in_ch]);
|
||||
out_buff += output_offset;
|
||||
out_buff = MIN(MAX(out_buff, output_activation_min), output_activation_max);
|
||||
output[out_idx++] = (int8_t)out_buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,292 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_s16.c
|
||||
* Description: s16 version of depthwise convolution.
|
||||
*
|
||||
* $Date: 26. Jan 2022
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
static void __attribute__((unused)) depthwise_conv_s16_mult_4_s16(const int16_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const int8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int64_t *bias,
|
||||
int16_t *output,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch;
|
||||
++in_ch, out_ch += ch_mult)
|
||||
{
|
||||
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
|
||||
{
|
||||
int32_t out_buff32[4] = {REDUCE_MULTIPLIER(output_mult[out_ch + 0 + mult_tile]),
|
||||
REDUCE_MULTIPLIER(output_mult[out_ch + 1 + mult_tile]),
|
||||
REDUCE_MULTIPLIER(output_mult[out_ch + 2 + mult_tile]),
|
||||
REDUCE_MULTIPLIER(output_mult[out_ch + 3 + mult_tile])};
|
||||
|
||||
int64_t out_buff[4] = {0, 0, 0, 0};
|
||||
|
||||
if (bias)
|
||||
{
|
||||
out_buff[0] = bias[out_ch + 0 + mult_tile];
|
||||
out_buff[1] = bias[out_ch + 1 + mult_tile];
|
||||
out_buff[2] = bias[out_ch + 2 + mult_tile];
|
||||
out_buff[3] = bias[out_ch + 3 + mult_tile];
|
||||
}
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
|
||||
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
|
||||
#pragma clang loop unroll(disable)
|
||||
#endif
|
||||
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w);
|
||||
++ker_w, ker_idx += output_ch)
|
||||
{
|
||||
// TODO: Unroll of 4 with 64 bit accumulator will probably result in too much register
|
||||
// spills. Try with unroll of 2 when enabling this.
|
||||
int32_t in_val = input[in_idx + ker_w * input_ch];
|
||||
out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
|
||||
out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
|
||||
out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
|
||||
out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
|
||||
}
|
||||
}
|
||||
|
||||
out_buff32[0] =
|
||||
arm_nn_requantize_s64(out_buff[0], out_buff32[0], output_shift[out_ch + 0 + mult_tile]);
|
||||
out_buff32[1] =
|
||||
arm_nn_requantize_s64(out_buff[1], out_buff32[1], output_shift[out_ch + 1 + mult_tile]);
|
||||
out_buff32[2] =
|
||||
arm_nn_requantize_s64(out_buff[2], out_buff32[2], output_shift[out_ch + 2 + mult_tile]);
|
||||
out_buff32[3] =
|
||||
arm_nn_requantize_s64(out_buff[3], out_buff32[3], output_shift[out_ch + 3 + mult_tile]);
|
||||
|
||||
out_buff32[0] = MIN(MAX(out_buff32[0], output_activation_min), output_activation_max);
|
||||
out_buff32[1] = MIN(MAX(out_buff32[1], output_activation_min), output_activation_max);
|
||||
out_buff32[2] = MIN(MAX(out_buff32[2], output_activation_min), output_activation_max);
|
||||
out_buff32[3] = MIN(MAX(out_buff32[3], output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (int16_t)out_buff32[0];
|
||||
output[out_idx++] = (int16_t)out_buff32[1];
|
||||
output[out_idx++] = (int16_t)out_buff32[2];
|
||||
output[out_idx++] = (int16_t)out_buff32[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void depthwise_conv_s16_generic_s16(const int16_t *input,
|
||||
const uint16_t input_batches,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_ch,
|
||||
const int8_t *kernel,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t kernel_x,
|
||||
const uint16_t kernel_y,
|
||||
const uint16_t pad_x,
|
||||
const uint16_t pad_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const int64_t *bias,
|
||||
int16_t *output,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const uint16_t output_x,
|
||||
const uint16_t output_y,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max,
|
||||
const uint16_t dilation_x,
|
||||
const uint16_t dilation_y)
|
||||
|
||||
{
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
|
||||
{
|
||||
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
|
||||
|
||||
const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[idx_out_ch]);
|
||||
int64_t acc_0 = 0;
|
||||
|
||||
int ker_y_start;
|
||||
int ker_x_start;
|
||||
int ker_y_end;
|
||||
int ker_x_end;
|
||||
|
||||
if (dilation_x > 1)
|
||||
{
|
||||
const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
|
||||
ker_x_start = MAX(0, start_x_max);
|
||||
const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
|
||||
ker_x_end = MIN(kernel_x, end_min_x);
|
||||
}
|
||||
else
|
||||
{
|
||||
ker_x_start = MAX(0, -base_idx_x);
|
||||
ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
}
|
||||
|
||||
if (dilation_y > 1)
|
||||
{
|
||||
const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
|
||||
ker_y_start = MAX(0, start_y_max);
|
||||
const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
|
||||
ker_y_end = MIN(kernel_y, end_min_y);
|
||||
}
|
||||
else
|
||||
{
|
||||
ker_y_start = MAX(0, -base_idx_y);
|
||||
ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
}
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_0 = bias[idx_out_ch];
|
||||
}
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + dilation_y * i_ker_y;
|
||||
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + dilation_x * i_ker_x;
|
||||
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
|
||||
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
|
||||
|
||||
acc_0 += input[idx_0] * kernel[ker_idx_0];
|
||||
}
|
||||
}
|
||||
|
||||
/* Requantize and clamp output to provided range */
|
||||
int32_t result = arm_nn_requantize_s64(acc_0, reduced_multiplier, output_shift[idx_out_ch]);
|
||||
result = MAX(result, output_activation_min);
|
||||
result = MIN(result, output_activation_max);
|
||||
*output++ = (int16_t)result;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Advance to the next batch */
|
||||
input += (input_x * input_y * input_ch);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic s16 depthwise convolution function.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q15_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int64_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q15_t *output)
|
||||
{
|
||||
const uint16_t dilation_x = dw_conv_params->dilation.w;
|
||||
const uint16_t dilation_y = dw_conv_params->dilation.h;
|
||||
|
||||
(void)bias_dims;
|
||||
(void)ctx;
|
||||
|
||||
depthwise_conv_s16_generic_s16(input,
|
||||
input_dims->n,
|
||||
input_dims->w,
|
||||
input_dims->h,
|
||||
input_dims->c,
|
||||
kernel,
|
||||
dw_conv_params->ch_mult,
|
||||
filter_dims->w,
|
||||
filter_dims->h,
|
||||
dw_conv_params->padding.w,
|
||||
dw_conv_params->padding.h,
|
||||
dw_conv_params->stride.w,
|
||||
dw_conv_params->stride.h,
|
||||
bias,
|
||||
output,
|
||||
quant_params->shift,
|
||||
quant_params->multiplier,
|
||||
output_dims->w,
|
||||
output_dims->h,
|
||||
dw_conv_params->activation.min,
|
||||
dw_conv_params->activation.max,
|
||||
dilation_x,
|
||||
dilation_y);
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,347 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_s8.c
|
||||
* Description: s8 version of depthwise convolution.
|
||||
*
|
||||
* $Date: 30. Dec 2021
|
||||
* $Revision: V.2.7.1
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
static void depthwise_conv_s8_mult_4(const int8_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const int8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int32_t *bias,
|
||||
int8_t *output,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch;
|
||||
++in_ch, out_ch += ch_mult)
|
||||
{
|
||||
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
|
||||
{
|
||||
int32_t out_buff[4] = {0, 0, 0, 0};
|
||||
if (bias)
|
||||
{
|
||||
out_buff[0] = bias[out_ch + 0 + mult_tile];
|
||||
out_buff[1] = bias[out_ch + 1 + mult_tile];
|
||||
out_buff[2] = bias[out_ch + 2 + mult_tile];
|
||||
out_buff[3] = bias[out_ch + 3 + mult_tile];
|
||||
}
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
|
||||
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
|
||||
#pragma clang loop unroll(disable)
|
||||
#endif
|
||||
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w);
|
||||
++ker_w, ker_idx += output_ch)
|
||||
{
|
||||
int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset;
|
||||
out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
|
||||
out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
|
||||
out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
|
||||
out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
|
||||
}
|
||||
}
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
(void)out_idx;
|
||||
int32x4_t res = vldrwq_s32(out_buff);
|
||||
res = arm_requantize_mve_32x4(res,
|
||||
vldrwq_s32(&output_mult[out_ch + mult_tile]),
|
||||
vldrwq_s32(&output_shift[out_ch + mult_tile]));
|
||||
res = vaddq_n_s32(res, output_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(output_activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(output_activation_max));
|
||||
vstrbq_s32(output, res);
|
||||
output += 4;
|
||||
#else
|
||||
out_buff[0] = arm_nn_requantize(
|
||||
out_buff[0], output_mult[out_ch + 0 + mult_tile], output_shift[out_ch + 0 + mult_tile]);
|
||||
out_buff[1] = arm_nn_requantize(
|
||||
out_buff[1], output_mult[out_ch + 1 + mult_tile], output_shift[out_ch + 1 + mult_tile]);
|
||||
out_buff[2] = arm_nn_requantize(
|
||||
out_buff[2], output_mult[out_ch + 2 + mult_tile], output_shift[out_ch + 2 + mult_tile]);
|
||||
out_buff[3] = arm_nn_requantize(
|
||||
out_buff[3], output_mult[out_ch + 3 + mult_tile], output_shift[out_ch + 3 + mult_tile]);
|
||||
|
||||
out_buff[0] += output_offset;
|
||||
out_buff[1] += output_offset;
|
||||
out_buff[2] += output_offset;
|
||||
out_buff[3] += output_offset;
|
||||
|
||||
out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max);
|
||||
out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max);
|
||||
out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max);
|
||||
out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (int8_t)out_buff[0];
|
||||
output[out_idx++] = (int8_t)out_buff[1];
|
||||
output[out_idx++] = (int8_t)out_buff[2];
|
||||
output[out_idx++] = (int8_t)out_buff[3];
|
||||
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void depthwise_conv_s8_generic(const q7_t *input,
|
||||
const uint16_t input_batches,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_ch,
|
||||
const q7_t *kernel,
|
||||
const uint16_t output_ch,
|
||||
const uint16_t ch_mult,
|
||||
const uint16_t kernel_x,
|
||||
const uint16_t kernel_y,
|
||||
const uint16_t pad_x,
|
||||
const uint16_t pad_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const int32_t *bias,
|
||||
q7_t *output,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const uint16_t output_x,
|
||||
const uint16_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max,
|
||||
const uint16_t dilation_x,
|
||||
const uint16_t dilation_y)
|
||||
|
||||
{
|
||||
(void)output_ch;
|
||||
int i_out = 0;
|
||||
int i_batch;
|
||||
|
||||
for (i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
|
||||
{
|
||||
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
|
||||
int32_t acc_0 = 0;
|
||||
|
||||
int ker_y_start;
|
||||
int ker_x_start;
|
||||
int ker_y_end;
|
||||
int ker_x_end;
|
||||
|
||||
if (dilation_x > 1)
|
||||
{
|
||||
const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
|
||||
ker_x_start = MAX(0, start_x_max);
|
||||
const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
|
||||
ker_x_end = MIN(kernel_x, end_min_x);
|
||||
}
|
||||
else
|
||||
{
|
||||
ker_x_start = MAX(0, -base_idx_x);
|
||||
ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
}
|
||||
|
||||
if (dilation_y > 1)
|
||||
{
|
||||
const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
|
||||
ker_y_start = MAX(0, start_y_max);
|
||||
const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
|
||||
ker_y_end = MIN(kernel_y, end_min_y);
|
||||
}
|
||||
else
|
||||
{
|
||||
ker_y_start = MAX(0, -base_idx_y);
|
||||
ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
}
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_0 = bias[idx_out_ch];
|
||||
}
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + dilation_y * i_ker_y;
|
||||
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + dilation_x * i_ker_x;
|
||||
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
|
||||
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
|
||||
|
||||
acc_0 += (input[idx_0] + input_offset) * kernel[ker_idx_0];
|
||||
}
|
||||
}
|
||||
|
||||
/* Requantize and clamp output to provided range */
|
||||
acc_0 = arm_nn_requantize(acc_0, output_mult[idx_out_ch], output_shift[idx_out_ch]);
|
||||
acc_0 += output_offset;
|
||||
acc_0 = MAX(acc_0, output_activation_min);
|
||||
acc_0 = MIN(acc_0, output_activation_max);
|
||||
|
||||
output[i_out++] = acc_0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Advance to the next batch */
|
||||
input += (input_x * input_y * input_ch);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic s8 depthwise convolution function.
|
||||
*
|
||||
* Refer header file for details.
|
||||
* Optimization using DSP extension is not available for the generic case where channel multiplier is > 1.
|
||||
*
|
||||
*/
|
||||
arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
const uint16_t dilation_x = dw_conv_params->dilation.w;
|
||||
const uint16_t dilation_y = dw_conv_params->dilation.h;
|
||||
|
||||
(void)dw_conv_params->dilation;
|
||||
(void)bias_dims;
|
||||
(void)ctx;
|
||||
|
||||
if (dw_conv_params->ch_mult % 4 == 0 && input_dims->n == 1 && dw_conv_params->dilation.w == 1 &&
|
||||
dw_conv_params->dilation.h == 1)
|
||||
{
|
||||
depthwise_conv_s8_mult_4(input,
|
||||
input_dims->w,
|
||||
input_dims->h,
|
||||
input_dims->c,
|
||||
kernel,
|
||||
output_dims->c,
|
||||
dw_conv_params->ch_mult,
|
||||
filter_dims->w,
|
||||
filter_dims->h,
|
||||
dw_conv_params->padding.w,
|
||||
dw_conv_params->padding.h,
|
||||
dw_conv_params->stride.w,
|
||||
dw_conv_params->stride.h,
|
||||
bias,
|
||||
output,
|
||||
quant_params->shift,
|
||||
quant_params->multiplier,
|
||||
output_dims->w,
|
||||
output_dims->h,
|
||||
dw_conv_params->output_offset,
|
||||
dw_conv_params->input_offset,
|
||||
dw_conv_params->activation.min,
|
||||
dw_conv_params->activation.max);
|
||||
}
|
||||
else
|
||||
{
|
||||
depthwise_conv_s8_generic(input,
|
||||
input_dims->n,
|
||||
input_dims->w,
|
||||
input_dims->h,
|
||||
input_dims->c,
|
||||
kernel,
|
||||
output_dims->c,
|
||||
dw_conv_params->ch_mult,
|
||||
filter_dims->w,
|
||||
filter_dims->h,
|
||||
dw_conv_params->padding.w,
|
||||
dw_conv_params->padding.h,
|
||||
dw_conv_params->stride.w,
|
||||
dw_conv_params->stride.h,
|
||||
bias,
|
||||
output,
|
||||
quant_params->shift,
|
||||
quant_params->multiplier,
|
||||
output_dims->w,
|
||||
output_dims->h,
|
||||
dw_conv_params->output_offset,
|
||||
dw_conv_params->input_offset,
|
||||
dw_conv_params->activation.min,
|
||||
dw_conv_params->activation.max,
|
||||
dilation_x,
|
||||
dilation_y);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,433 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_s8_opt.c
|
||||
* Description: Optimized s8 depthwise separable convolution function for
|
||||
* channel multiplier of 1.
|
||||
*
|
||||
* $Date: January 26, 2021
|
||||
* $Revision: V.2.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel
|
||||
*
|
||||
* Refer prototype header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
|
||||
const int32_t input_ch = input_dims->c;
|
||||
const int32_t output_ch = output_dims->c;
|
||||
|
||||
/* Check input constraints input_ch == output_ch */
|
||||
if (input_ch != output_ch)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
if (ctx->buf == NULL && arm_depthwise_conv_s8_opt_get_buffer_size(input_dims, filter_dims) > 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
#ifdef ARM_MATH_DSP
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t pad_x = dw_conv_params->padding.w;
|
||||
const int32_t pad_y = dw_conv_params->padding.h;
|
||||
const int32_t stride_x = dw_conv_params->stride.w;
|
||||
const int32_t stride_y = dw_conv_params->stride.h;
|
||||
const int32_t *output_shift = quant_params->shift;
|
||||
const int32_t *output_mult = quant_params->multiplier;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_offset = dw_conv_params->output_offset;
|
||||
const int32_t input_offset = dw_conv_params->input_offset;
|
||||
const int32_t output_activation_min = dw_conv_params->activation.min;
|
||||
const int32_t output_activation_max = dw_conv_params->activation.max;
|
||||
q15_t *buffer_a = (q15_t *)ctx->buf;
|
||||
|
||||
#ifdef ARM_MATH_MVEI
|
||||
(void)bias_dims;
|
||||
/* Generate two columns from the input tensor */
|
||||
q7_t *lhs_buffer = (q7_t *)buffer_a;
|
||||
q7_t *out = output;
|
||||
int padded = 0;
|
||||
int buffer_count = 0;
|
||||
const int32_t kernel_size = kernel_x * kernel_y;
|
||||
|
||||
/* This part implements the im2col function */
|
||||
for (int i_out_y = 0, base_idx_y = -pad_y; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
|
||||
{
|
||||
for (int i_out_x = 0, base_idx_x = -pad_x; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
|
||||
{
|
||||
for (int i_ker_y = base_idx_y; i_ker_y < base_idx_y + kernel_y; i_ker_y++)
|
||||
{
|
||||
for (int i_ker_x = base_idx_x; i_ker_x < base_idx_x + kernel_x; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
|
||||
{
|
||||
arm_memset_q7(lhs_buffer, (int8_t)-input_offset, (uint32_t)input_ch);
|
||||
padded = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_memcpy_q7(lhs_buffer, input + (i_ker_y * input_x + i_ker_x) * input_ch, (uint32_t)input_ch);
|
||||
}
|
||||
lhs_buffer += input_ch;
|
||||
}
|
||||
}
|
||||
buffer_count++;
|
||||
|
||||
if (buffer_count == 4)
|
||||
{
|
||||
lhs_buffer = (q7_t *)buffer_a;
|
||||
if (padded == 0)
|
||||
{
|
||||
out = arm_nn_depthwise_conv_nt_t_s8(lhs_buffer,
|
||||
kernel,
|
||||
input_offset,
|
||||
input_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
output_offset,
|
||||
output_activation_min,
|
||||
output_activation_max,
|
||||
kernel_size,
|
||||
bias,
|
||||
out);
|
||||
}
|
||||
else
|
||||
{
|
||||
out = arm_nn_depthwise_conv_nt_t_padded_s8(lhs_buffer,
|
||||
kernel,
|
||||
input_offset,
|
||||
input_ch,
|
||||
output_shift,
|
||||
output_mult,
|
||||
output_offset,
|
||||
output_activation_min,
|
||||
output_activation_max,
|
||||
kernel_size,
|
||||
bias,
|
||||
out);
|
||||
padded = 0;
|
||||
}
|
||||
buffer_count = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Handle left over buffers */
|
||||
lhs_buffer = (q7_t *)buffer_a;
|
||||
|
||||
for (int i_buf = 0; i_buf < buffer_count; i_buf++)
|
||||
{
|
||||
int32_t loop_count = (input_ch + 3) / 4;
|
||||
|
||||
int32_t num_ch_to_process = input_ch;
|
||||
for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count; num_ch_to_process -= 4, offset += 4, i_loop_cnt++)
|
||||
{
|
||||
const int8_t *col_0 = lhs_buffer + (kernel_size * input_ch * i_buf) + offset;
|
||||
const int8_t *row_0 = kernel + offset;
|
||||
int32x4_t out_0 = vldrwq_s32(&bias[offset]);
|
||||
|
||||
for (int i_ker = 0; i_ker < kernel_size; i_ker++)
|
||||
{
|
||||
const int32x4_t ker_0 = vldrbq_s32(row_0);
|
||||
|
||||
int32x4_t ip_0 = vldrbq_s32(col_0);
|
||||
ip_0 = vaddq_n_s32(ip_0, input_offset);
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
|
||||
col_0 += input_ch;
|
||||
row_0 += input_ch;
|
||||
}
|
||||
|
||||
const int32x4_t mult = vldrwq_s32(&output_mult[offset]);
|
||||
const int32x4_t shift = vldrwq_s32(&output_shift[offset]);
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_0 = vaddq_n_s32(out_0, output_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(output_activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(output_activation_max));
|
||||
mve_pred16_t p = vctp32q((uint32_t)num_ch_to_process);
|
||||
vstrbq_p_s32(out, out_0, p);
|
||||
|
||||
out += 4;
|
||||
}
|
||||
|
||||
const int tail_ch = input_ch & 0x3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
out -= (4 - tail_ch);
|
||||
}
|
||||
}
|
||||
|
||||
#else // ARM_MATH_DSP
|
||||
(void)bias_dims;
|
||||
/* Run the following code in cores using DSP extension */
|
||||
q15_t *const col_buffer_start = buffer_a;
|
||||
q15_t *col_buffer = col_buffer_start;
|
||||
const int32_t *const bias_start_pos = bias;
|
||||
const q31_t *const out_mult_start_pos = output_mult;
|
||||
const q31_t *const out_shift_start_pos = output_shift;
|
||||
uint16_t row_count;
|
||||
uint16_t row_shift;
|
||||
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
|
||||
/* Out of bounds is only considered for the y axis as it provides a contiguous zero'ing opportunity than
|
||||
along the x axis */
|
||||
const int ker_y_start = MAX(0, -base_idx_y);
|
||||
/* Condition for kernel end dimension: (base_idx_y + ker_y_end) < input_y */
|
||||
const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
|
||||
int32_t index = 0;
|
||||
if (ker_y_start != 0)
|
||||
{
|
||||
memset(&col_buffer[index], 0, (kernel_x * input_ch) * ker_y_start * sizeof(q15_t));
|
||||
index += (kernel_x * input_ch) * ker_y_start;
|
||||
}
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + i_ker_y;
|
||||
|
||||
for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + i_ker_x;
|
||||
if (idx_x < 0 || idx_x >= input_x)
|
||||
{
|
||||
memset(&col_buffer[index], 0, input_ch * sizeof(q15_t));
|
||||
}
|
||||
else
|
||||
{
|
||||
arm_q7_to_q15_with_offset((q7_t *)input + (idx_y * input_x + idx_x) * input_ch,
|
||||
&col_buffer[index],
|
||||
input_ch,
|
||||
input_offset);
|
||||
}
|
||||
index += input_ch;
|
||||
}
|
||||
}
|
||||
|
||||
const int diff = kernel_y - ker_y_end;
|
||||
if (diff != 0)
|
||||
{
|
||||
memset(&col_buffer[index], 0, (kernel_x * input_ch) * diff * sizeof(q15_t));
|
||||
}
|
||||
|
||||
row_count = output_ch / 4;
|
||||
row_shift = 0;
|
||||
bias = bias_start_pos;
|
||||
output_mult = out_mult_start_pos;
|
||||
output_shift = out_shift_start_pos;
|
||||
|
||||
while (row_count)
|
||||
{
|
||||
q31_t sum = *bias++;
|
||||
q31_t sum_2 = *bias++;
|
||||
q31_t sum_3 = *bias++;
|
||||
q31_t sum_4 = *bias++;
|
||||
|
||||
uint16_t col_count = (kernel_x * kernel_y) / 2;
|
||||
q15_t *col_pos = col_buffer_start + row_shift;
|
||||
const q7_t *row_pos = kernel + row_shift;
|
||||
row_shift += 4;
|
||||
|
||||
while (col_count)
|
||||
{
|
||||
/* General idea is to read 4 + 4 (input, kernel) pair and re-arrange them in the right order to
|
||||
use in a SMLAD instruction . One run of this loop produces 4 partial outputs with 8 MACs. */
|
||||
/* Note: variable names can be improved here to align with rows and columns. */
|
||||
q31_t ip_a1, ip_a2, ip_b1, ip_b2, op_a, op_b, op_c;
|
||||
/* Read 4 weights */
|
||||
ip_b1 = arm_nn_read_q7x4(row_pos);
|
||||
ip_a1 = arm_nn_read_q7x4(row_pos + input_ch);
|
||||
op_a = arm_nn_read_q15x2(col_pos);
|
||||
op_b = arm_nn_read_q15x2(col_pos + input_ch);
|
||||
|
||||
ip_a2 = __SXTB16(ip_b1);
|
||||
ip_b1 = __SXTB16(__ROR(ip_b1, 8));
|
||||
|
||||
ip_b2 = __SXTB16(ip_a1);
|
||||
ip_a1 = __SXTB16(__ROR(ip_a1, 8));
|
||||
|
||||
op_c = __PKHBT(op_b, op_a, 16);
|
||||
op_a = __PKHTB(op_b, op_a, 16);
|
||||
op_b = __PKHBT(ip_b2, ip_a2, 16);
|
||||
sum = __SMLAD(op_c, op_b, sum);
|
||||
|
||||
op_b = __PKHBT(ip_b1, ip_a1, 16);
|
||||
sum_2 = __SMLAD(op_a, op_b, sum_2);
|
||||
|
||||
op_a = arm_nn_read_q15x2(col_pos + 2);
|
||||
op_b = arm_nn_read_q15x2(col_pos + input_ch + 2);
|
||||
|
||||
op_c = __PKHBT(op_b, op_a, 16);
|
||||
op_a = __PKHTB(op_b, op_a, 16);
|
||||
op_b = __PKHTB(ip_a2, ip_b2, 16);
|
||||
sum_3 = __SMLAD(op_c, op_b, sum_3);
|
||||
|
||||
op_b = __PKHTB(ip_a1, ip_b1, 16);
|
||||
sum_4 = __SMLAD(op_a, op_b, sum_4);
|
||||
|
||||
row_pos += input_ch << 1;
|
||||
col_pos += input_ch << 1;
|
||||
col_count--;
|
||||
}
|
||||
|
||||
col_count = (kernel_x * kernel_y) & 0x1;
|
||||
while (col_count)
|
||||
{
|
||||
sum += row_pos[0] * col_pos[0];
|
||||
sum_2 += row_pos[1] * col_pos[1];
|
||||
sum_3 += row_pos[2] * col_pos[2];
|
||||
sum_4 += row_pos[3] * col_pos[3];
|
||||
|
||||
row_pos += input_ch;
|
||||
col_pos += input_ch;
|
||||
|
||||
col_count--;
|
||||
}
|
||||
sum = arm_nn_requantize(sum, *output_mult++, *output_shift++);
|
||||
sum += output_offset;
|
||||
sum = MAX(sum, output_activation_min);
|
||||
sum = MIN(sum, output_activation_max);
|
||||
*output++ = (q7_t)sum;
|
||||
|
||||
sum_2 = arm_nn_requantize(sum_2, *output_mult++, *output_shift++);
|
||||
sum_2 += output_offset;
|
||||
sum_2 = MAX(sum_2, output_activation_min);
|
||||
sum_2 = MIN(sum_2, output_activation_max);
|
||||
*output++ = (q7_t)sum_2;
|
||||
sum_3 = arm_nn_requantize(sum_3, *output_mult++, *output_shift++);
|
||||
sum_3 += output_offset;
|
||||
sum_3 = MAX(sum_3, output_activation_min);
|
||||
sum_3 = MIN(sum_3, output_activation_max);
|
||||
*output++ = (q7_t)sum_3;
|
||||
|
||||
sum_4 = arm_nn_requantize(sum_4, *output_mult++, *output_shift++);
|
||||
sum_4 += output_offset;
|
||||
sum_4 = MAX(sum_4, output_activation_min);
|
||||
sum_4 = MIN(sum_4, output_activation_max);
|
||||
*output++ = (q7_t)sum_4;
|
||||
|
||||
row_count--;
|
||||
}
|
||||
|
||||
row_count = output_ch & 0x3;
|
||||
while (row_count)
|
||||
{
|
||||
q15_t *col_pos = col_buffer_start + row_shift;
|
||||
const q7_t *row_pos = kernel + row_shift;
|
||||
q31_t sum = *bias++;
|
||||
const uint16_t col_count = (kernel_x * kernel_y);
|
||||
row_shift += 1;
|
||||
|
||||
for (int i = 0; i < col_count; i++)
|
||||
{
|
||||
sum += row_pos[i * input_ch] * col_pos[i * input_ch];
|
||||
}
|
||||
sum = arm_nn_requantize(sum, *output_mult++, *output_shift++);
|
||||
sum += output_offset;
|
||||
sum = MAX(sum, output_activation_min);
|
||||
sum = MIN(sum, output_activation_max);
|
||||
*output++ = (q7_t)sum;
|
||||
|
||||
row_count--;
|
||||
}
|
||||
|
||||
// clear counter and pointers
|
||||
col_buffer = col_buffer_start;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
return arm_depthwise_conv_s8(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
kernel,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
#endif /* ARM_MATH_MVEI | ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
/* The + 4 accounts for out of bounds read of the lhs buffers in the *_nt_t_* functions. */
|
||||
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t) + 4;
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
return (input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
|
||||
#else
|
||||
(void)input_dims;
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,336 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_u8_basic_ver1.c
|
||||
* Description: u8 depthwise convolution function
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target : Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
static void depthwise_conv_u8_mult_4(const uint8_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int32_t *bias,
|
||||
uint8_t *output,
|
||||
const int32_t output_shift,
|
||||
const int32_t output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||||
{
|
||||
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||||
{
|
||||
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch;
|
||||
++in_ch, out_ch += ch_mult)
|
||||
{
|
||||
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
|
||||
{
|
||||
int32_t out_buff[4];
|
||||
|
||||
out_buff[0] = 0;
|
||||
out_buff[1] = 0;
|
||||
out_buff[2] = 0;
|
||||
out_buff[3] = 0;
|
||||
|
||||
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
|
||||
{
|
||||
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
|
||||
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||||
|
||||
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w);
|
||||
++ker_w, ker_idx += output_ch)
|
||||
{
|
||||
int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset;
|
||||
out_buff[0] += in_val * (kernel[ker_idx + 0 + mult_tile] + filter_offset);
|
||||
out_buff[1] += in_val * (kernel[ker_idx + 1 + mult_tile] + filter_offset);
|
||||
out_buff[2] += in_val * (kernel[ker_idx + 2 + mult_tile] + filter_offset);
|
||||
out_buff[3] += in_val * (kernel[ker_idx + 3 + mult_tile] + filter_offset);
|
||||
}
|
||||
}
|
||||
|
||||
if (bias != NULL)
|
||||
{
|
||||
out_buff[0] += bias[out_ch + 0 + mult_tile];
|
||||
out_buff[1] += bias[out_ch + 1 + mult_tile];
|
||||
out_buff[2] += bias[out_ch + 2 + mult_tile];
|
||||
out_buff[3] += bias[out_ch + 3 + mult_tile];
|
||||
}
|
||||
out_buff[0] = arm_nn_requantize(out_buff[0], output_mult, output_shift);
|
||||
out_buff[1] = arm_nn_requantize(out_buff[1], output_mult, output_shift);
|
||||
out_buff[2] = arm_nn_requantize(out_buff[2], output_mult, output_shift);
|
||||
out_buff[3] = arm_nn_requantize(out_buff[3], output_mult, output_shift);
|
||||
|
||||
out_buff[0] += output_offset;
|
||||
out_buff[1] += output_offset;
|
||||
out_buff[2] += output_offset;
|
||||
out_buff[3] += output_offset;
|
||||
|
||||
out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max);
|
||||
out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max);
|
||||
out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max);
|
||||
out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max);
|
||||
|
||||
output[out_idx++] = (uint8_t)out_buff[0];
|
||||
output[out_idx++] = (uint8_t)out_buff[1];
|
||||
output[out_idx++] = (uint8_t)out_buff[2];
|
||||
output[out_idx++] = (uint8_t)out_buff[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void depthwise_conv_u8_generic(const uint8_t *input,
|
||||
const int32_t input_x,
|
||||
const int32_t input_y,
|
||||
const int32_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const int32_t output_ch,
|
||||
const int32_t ch_mult,
|
||||
const int32_t kernel_x,
|
||||
const int32_t kernel_y,
|
||||
const int32_t pad_x,
|
||||
const int32_t pad_y,
|
||||
const int32_t stride_x,
|
||||
const int32_t stride_y,
|
||||
const int32_t *bias,
|
||||
uint8_t *output,
|
||||
const int32_t output_shift,
|
||||
const int32_t output_mult,
|
||||
const int32_t output_x,
|
||||
const int32_t output_y,
|
||||
const int32_t output_offset,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max)
|
||||
{
|
||||
(void)output_ch;
|
||||
int i_out = 0;
|
||||
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||||
{
|
||||
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||||
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||||
{
|
||||
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||||
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||||
{
|
||||
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
|
||||
{
|
||||
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
|
||||
int32_t acc_0;
|
||||
/* Condition for kernel start dimension: (base_idx_<x,y> + ker_<x,y>_start) >= 0 */
|
||||
const int ker_y_start = MAX(0, -base_idx_y);
|
||||
const int ker_x_start = MAX(0, -base_idx_x);
|
||||
/* Condition for kernel end dimension: (base_idx_<x,y> + ker_<x,y>_end) < input_<x,y> */
|
||||
const int ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
acc_0 = 0;
|
||||
|
||||
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||||
{
|
||||
const int32_t idx_y = base_idx_y + i_ker_y;
|
||||
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||||
{
|
||||
const int32_t idx_x = base_idx_x + i_ker_x;
|
||||
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
|
||||
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
|
||||
|
||||
acc_0 += (input[idx_0] + input_offset) * (kernel[ker_idx_0] + filter_offset);
|
||||
}
|
||||
}
|
||||
if (bias != NULL)
|
||||
{
|
||||
acc_0 += bias[idx_out_ch];
|
||||
}
|
||||
|
||||
/* Requantize and clamp output to provided range */
|
||||
acc_0 = arm_nn_requantize(acc_0, output_mult, output_shift);
|
||||
acc_0 += output_offset;
|
||||
acc_0 = MAX(acc_0, output_activation_min);
|
||||
acc_0 = MIN(acc_0, output_activation_max);
|
||||
|
||||
output[i_out++] = acc_0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief uint8 depthwise convolution function with asymmetric quantization
|
||||
*
|
||||
* @param[in] input Pointer to input tensor
|
||||
* @param[in] input_x Width of input tensor
|
||||
* @param[in] input_y Height of input tensor
|
||||
* @param[in] input_ch Channels in input tensor
|
||||
* @param[in] kernel Pointer to kernel weights
|
||||
* @param[in] kernel_x Width of kernel
|
||||
* @param[in] kernel_y Height of kernel
|
||||
* @param[in] ch_mult Number of channel multiplier
|
||||
* @param[in] pad_x Padding sizes x
|
||||
* @param[in] pad_y Padding sizes y
|
||||
* @param[in] stride_x Convolution stride along the width
|
||||
* @param[in] stride_y Convolution stride along the height
|
||||
* @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
|
||||
* @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
|
||||
* @param[in] bias Pointer to optional bias values. If no bias is
|
||||
* available, NULL is expected
|
||||
* @param[in] input_offset Input tensor zero offset
|
||||
* @param[in] filter_offset Kernel tensor zero offset
|
||||
* @param[in] output_offset Output tensor zero offset
|
||||
* @param[in,out] output Pointer to output tensor
|
||||
* @param[in] output_x Width of output tensor
|
||||
* @param[in] output_y Height of output tensor
|
||||
* @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
|
||||
* @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
|
||||
* @param[in] output_shift Amount of right-shift for output
|
||||
* @param[in] output_mult Output multiplier for requantization
|
||||
* @return The function returns one of the following
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
|
||||
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||||
* <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
|
||||
const uint16_t input_x,
|
||||
const uint16_t input_y,
|
||||
const uint16_t input_ch,
|
||||
const uint8_t *kernel,
|
||||
const uint16_t kernel_x,
|
||||
const uint16_t kernel_y,
|
||||
const int16_t ch_mult,
|
||||
const int16_t pad_x,
|
||||
const int16_t pad_y,
|
||||
const int16_t stride_x,
|
||||
const int16_t stride_y,
|
||||
const int16_t dilation_x,
|
||||
const int16_t dilation_y,
|
||||
const int32_t *bias,
|
||||
const int32_t input_offset,
|
||||
const int32_t filter_offset,
|
||||
const int32_t output_offset,
|
||||
uint8_t *output,
|
||||
const uint16_t output_x,
|
||||
const uint16_t output_y,
|
||||
const int32_t output_activation_min,
|
||||
const int32_t output_activation_max,
|
||||
const int32_t output_shift,
|
||||
const int32_t output_mult)
|
||||
{
|
||||
(void)dilation_x;
|
||||
(void)dilation_y;
|
||||
|
||||
if (ch_mult % 4 == 0)
|
||||
{
|
||||
depthwise_conv_u8_mult_4(input,
|
||||
input_x,
|
||||
input_y,
|
||||
input_ch,
|
||||
kernel,
|
||||
ch_mult * input_ch,
|
||||
ch_mult,
|
||||
kernel_x,
|
||||
kernel_y,
|
||||
pad_x,
|
||||
pad_y,
|
||||
stride_x,
|
||||
stride_y,
|
||||
bias,
|
||||
output,
|
||||
output_shift,
|
||||
output_mult,
|
||||
output_x,
|
||||
output_y,
|
||||
output_offset,
|
||||
input_offset,
|
||||
filter_offset,
|
||||
output_activation_min,
|
||||
output_activation_max);
|
||||
}
|
||||
else
|
||||
{
|
||||
depthwise_conv_u8_generic(input,
|
||||
input_x,
|
||||
input_y,
|
||||
input_ch,
|
||||
kernel,
|
||||
ch_mult * input_ch,
|
||||
ch_mult,
|
||||
kernel_x,
|
||||
kernel_y,
|
||||
pad_x,
|
||||
pad_y,
|
||||
stride_x,
|
||||
stride_y,
|
||||
bias,
|
||||
output,
|
||||
output_shift,
|
||||
output_mult,
|
||||
output_x,
|
||||
output_y,
|
||||
output_offset,
|
||||
input_offset,
|
||||
filter_offset,
|
||||
output_activation_min,
|
||||
output_activation_max);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,135 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_conv_wrapper_s8.c
|
||||
* Description: Wrapper API to select appropriate depthwise conv API based
|
||||
* on dimensions.
|
||||
*
|
||||
* $Date: 20. Dec 2021
|
||||
* $Revision: V.1.4.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 Depthwise conv wrapper function
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *filter,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
arm_status status = ARM_MATH_SUCCESS;
|
||||
if (1 == dw_conv_params->ch_mult && input_dims->n == 1 && dw_conv_params->dilation.w == 1 &&
|
||||
dw_conv_params->dilation.h == 1)
|
||||
{
|
||||
#if !defined(ARM_MATH_MVEI)
|
||||
if ((filter_dims->w == 3) && (filter_dims->h == 3) && (dw_conv_params->padding.h <= 1) &&
|
||||
(dw_conv_params->padding.w <= 1))
|
||||
{
|
||||
status = arm_depthwise_conv_3x3_s8(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
filter,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
status = arm_depthwise_conv_s8_opt(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
filter,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
status = arm_depthwise_conv_s8(ctx,
|
||||
dw_conv_params,
|
||||
quant_params,
|
||||
input_dims,
|
||||
input,
|
||||
filter_dims,
|
||||
filter,
|
||||
bias_dims,
|
||||
bias,
|
||||
output_dims,
|
||||
output);
|
||||
}
|
||||
|
||||
/* Return to application */
|
||||
return status;
|
||||
}
|
||||
|
||||
int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims)
|
||||
{
|
||||
(void)dw_conv_params;
|
||||
int32_t size = 0;
|
||||
|
||||
if (input_dims->c == output_dims->c && input_dims->n == 1 && dw_conv_params->dilation.w == 1 &&
|
||||
dw_conv_params->dilation.h == 1)
|
||||
{
|
||||
size = arm_depthwise_conv_s8_opt_get_buffer_size(input_dims, filter_dims);
|
||||
}
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,422 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_separable_conv_HWC_q7.c
|
||||
* Description: Q7 depthwise separable convolution function
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 depthwise separable convolution function
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimension
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||||
*
|
||||
* bufferB size: 0
|
||||
*
|
||||
* <b>Input dimension constraints:</b>
|
||||
*
|
||||
* ch_im_in equals ch_im_out
|
||||
*
|
||||
* Implementation:
|
||||
* There are 3 nested loop here:
|
||||
* Inner loop: calculate each output value with MAC instruction over an accumulator
|
||||
* Mid loop: loop over different output channel
|
||||
* Outer loop: loop over different output (x, y)
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
(void)bufferB;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_out_y, i_out_x;
|
||||
int16_t i_ker_y, i_ker_x;
|
||||
q7_t *colBuffer = (q7_t *)bufferA;
|
||||
q7_t *pBuffer = colBuffer;
|
||||
const q7_t *pBias = bias;
|
||||
q7_t *pOut = Im_out;
|
||||
uint16_t rowCnt;
|
||||
uint16_t row_shift;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
/* we first do im2col here */
|
||||
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
||||
{
|
||||
/* arm_fill_q7(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
|
||||
*/
|
||||
memcpy(pBuffer, (q7_t *)Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* we will do the computation here for each channel */
|
||||
rowCnt = ch_im_out >> 2;
|
||||
row_shift = 0;
|
||||
pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = (dim_kernel * dim_kernel) >> 1;
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
row_shift += 4;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHTB(opB, inB1, 16);
|
||||
inB1 = __PKHBT(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHTB(opB, inA1, 16);
|
||||
inA1 = __PKHBT(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#else
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHBT(opB, inB1, 16);
|
||||
inB1 = __PKHTB(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHBT(opB, inA1, 16);
|
||||
inA1 = __PKHTB(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
/*
|
||||
* r0 r1 r2 r3 r4 r5
|
||||
* inA1, inA2, inB1, inB2, opA, opB
|
||||
*/
|
||||
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhtb r3, r5, r2, ASR #16\n"
|
||||
"pkhbt r2, r2, r5, LSL #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhtb r1, r5, r0, ASR #16\n"
|
||||
"pkhbt r0, r0, r5, LSL #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt), [ ch_im_in ] "r"(ch_im_in)
|
||||
: "r0", "r1", "r2", "r3", "r4", "r5");
|
||||
#else
|
||||
/*
|
||||
* r0 r1 r2 r3 r4 r5
|
||||
* inA1, inA2, inB1, inB2, opA, opB
|
||||
*/
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhbt r3, r5, r2, LSL #16\n"
|
||||
"pkhtb r2, r2, r5, ASR #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhbt r1, r5, r0, LSL #16\n"
|
||||
"pkhtb r0, r0, r5, ASR #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt), [ ch_im_in ] "r"(ch_im_in)
|
||||
: "r0", "r1", "r2", "r3", "r4", "r5");
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = (dim_kernel * dim_kernel) & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
union arm_nnword inA, inB;
|
||||
inA.word = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inB.word = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
sum += inA.bytes[0] * inB.bytes[0];
|
||||
sum2 += inA.bytes[1] * inB.bytes[1];
|
||||
sum3 += inA.bytes[2] * inB.bytes[2];
|
||||
sum4 += inA.bytes[3] * inB.bytes[3];
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum2 >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum3 >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = ch_im_out & 0x3;
|
||||
while (rowCnt)
|
||||
{
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = (dim_kernel * dim_kernel);
|
||||
|
||||
row_shift += 1;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t A1 = *pA;
|
||||
q7_t B1 = *pB;
|
||||
pA += ch_im_in;
|
||||
pB += ch_im_in;
|
||||
sum += A1 * B1;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* clear counter and pointers */
|
||||
pBuffer = colBuffer;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
|
||||
int conv_out;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
||||
{
|
||||
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
||||
{
|
||||
// for each output
|
||||
conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
|
||||
{
|
||||
int in_row = stride * i_out_y + i_ker_y - padding;
|
||||
int in_col = stride * i_out_x + i_ker_x - padding;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in + in_col) * ch_im_in + i_ch_out] *
|
||||
wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[(i_out_y * dim_im_out + i_out_x) * ch_im_out + i_ch_out] =
|
||||
(q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,427 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_depthwise_separable_conv_HWC_q7_nonsquare.c
|
||||
* Description: Q7 depthwise separable convolution function (non-square shape)
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNConv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 depthwise separable convolution function (non-square shape)
|
||||
* @param[in] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in_x input tensor dimension x
|
||||
* @param[in] dim_im_in_y input tensor dimension y
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] wt pointer to kernel weights
|
||||
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||||
* @param[in] dim_kernel_x filter kernel size x
|
||||
* @param[in] dim_kernel_y filter kernel size y
|
||||
* @param[in] padding_x padding sizes x
|
||||
* @param[in] padding_y padding sizes y
|
||||
* @param[in] stride_x convolution stride x
|
||||
* @param[in] stride_y convolution stride y
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
* @param[in] dim_im_out_x output tensor dimension x
|
||||
* @param[in] dim_im_out_y output tensor dimension y
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] bufferB pointer to buffer space for output
|
||||
* @return The function returns either
|
||||
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||||
*
|
||||
* This function is the version with full list of optimization tricks, but with
|
||||
* some constraints:
|
||||
* ch_im_in is equal to ch_im_out
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
|
||||
const uint16_t dim_im_in_x,
|
||||
const uint16_t dim_im_in_y,
|
||||
const uint16_t ch_im_in,
|
||||
const q7_t *wt,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t dim_kernel_x,
|
||||
const uint16_t dim_kernel_y,
|
||||
const uint16_t padding_x,
|
||||
const uint16_t padding_y,
|
||||
const uint16_t stride_x,
|
||||
const uint16_t stride_y,
|
||||
const q7_t *bias,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
q7_t *Im_out,
|
||||
const uint16_t dim_im_out_x,
|
||||
const uint16_t dim_im_out_y,
|
||||
q15_t *bufferA,
|
||||
q7_t *bufferB)
|
||||
{
|
||||
|
||||
(void)bufferB;
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
/*
|
||||
* Implementation:
|
||||
* There are 3 nested loop here:
|
||||
* Inner loop: calculate each output value with MAC instruction over an accumulator
|
||||
* Mid loop: loop over different output channel
|
||||
* Outer loop: loop over different output (x, y)
|
||||
*
|
||||
*/
|
||||
|
||||
int16_t i_out_y, i_out_x;
|
||||
int16_t i_ker_y, i_ker_x;
|
||||
q7_t *colBuffer = (q7_t *)bufferA;
|
||||
q7_t *pBuffer = colBuffer;
|
||||
const q7_t *pBias = bias;
|
||||
q7_t *pOut = Im_out;
|
||||
uint16_t rowCnt;
|
||||
uint16_t row_shift;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
/* we first do im2col here */
|
||||
for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
|
||||
i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
|
||||
i_ker_x++)
|
||||
{
|
||||
if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
|
||||
{
|
||||
/* arm_fill_q7(0, pBuffer, ch_im_in); */
|
||||
memset(pBuffer, 0, ch_im_in);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer,
|
||||
* ch_im_in); */
|
||||
memcpy(pBuffer, (q7_t *)Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in);
|
||||
}
|
||||
pBuffer += ch_im_in;
|
||||
}
|
||||
}
|
||||
|
||||
/* we will do the computation here for each channel */
|
||||
rowCnt = ch_im_out >> 2;
|
||||
row_shift = 0;
|
||||
pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = (dim_kernel_x * dim_kernel_y) >> 1;
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
row_shift += 4;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHTB(opB, inB1, 16);
|
||||
inB1 = __PKHBT(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHTB(opB, inA1, 16);
|
||||
inA1 = __PKHBT(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#else
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
||||
|
||||
inB1 = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
inB2 = __PKHBT(opB, inB1, 16);
|
||||
inB1 = __PKHTB(inB1, opB, 16);
|
||||
inA1 = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
opB = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inA2 = __PKHBT(opB, inA1, 16);
|
||||
inA1 = __PKHTB(inA1, opB, 16);
|
||||
opA = __SXTB16(inA1);
|
||||
opB = __SXTB16(inB1);
|
||||
sum2 = __SMLAD(opA, opB, sum2);
|
||||
opA = __SXTB16(__ROR(inA1, 8));
|
||||
opB = __SXTB16(__ROR(inB1, 8));
|
||||
sum = __SMLAD(opA, opB, sum);
|
||||
opA = __SXTB16(inA2);
|
||||
opB = __SXTB16(inB2);
|
||||
sum4 = __SMLAD(opA, opB, sum4);
|
||||
opA = __SXTB16(__ROR(inA2, 8));
|
||||
opB = __SXTB16(__ROR(inB2, 8));
|
||||
sum3 = __SMLAD(opA, opB, sum3);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
// r0 r1 r2 r3 r4 r5
|
||||
// inA1, inA2, inB1, inB2, opA, opB
|
||||
asm volatile("COL_LOOP:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhtb r3, r5, r2, ASR #16\n"
|
||||
"pkhbt r2, r2, r5, LSL #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhtb r1, r5, r0, ASR #16\n"
|
||||
"pkhbt r0, r0, r5, LSL #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt), [ ch_im_in ] "r"(ch_im_in)
|
||||
: "r0", "r1", "r2", "r3", "r4", "r5");
|
||||
#else
|
||||
// r0 r1 r2 r3 r4 r5
|
||||
// inA1, inA2, inB1, inB2, opA, opB
|
||||
asm volatile("COL_LOOP:\n"
|
||||
"ldr.w r2, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pB], #0]\n"
|
||||
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
||||
"pkhbt r3, r5, r2, LSL #16\n"
|
||||
"pkhtb r2, r2, r5, ASR #16\n"
|
||||
"ldr.w r0, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"ldr.w r5, [%[pA], #0]\n"
|
||||
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
||||
"pkhbt r1, r5, r0, LSL #16\n"
|
||||
"pkhtb r0, r0, r5, ASR #16\n"
|
||||
"sxtb16 r4, r0\n"
|
||||
"sxtb16 r5, r2\n"
|
||||
"smlad %[sum2], r4, r5, %[sum2]\n"
|
||||
"mov.w r4, r0, ror #8\n"
|
||||
"mov.w r5, r2, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum], r4, r5, %[sum]\n"
|
||||
"sxtb16 r4, r1\n"
|
||||
"sxtb16 r5, r3\n"
|
||||
"smlad %[sum4], r4, r5, %[sum4]\n"
|
||||
"mov.w r4, r1, ror #8\n"
|
||||
"mov.w r5, r3, ror #8\n"
|
||||
"sxtb16 r4, r4\n"
|
||||
"sxtb16 r5, r5\n"
|
||||
"smlad %[sum3], r4, r5, %[sum3]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt), [ ch_im_in ] "r"(ch_im_in)
|
||||
: "r0", "r1", "r2", "r3", "r4", "r5");
|
||||
#endif /*ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = (dim_kernel_x * dim_kernel_y) & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
union arm_nnword inA, inB;
|
||||
inA.word = arm_nn_read_q7x4(pA);
|
||||
pA += ch_im_in;
|
||||
inB.word = arm_nn_read_q7x4(pB);
|
||||
pB += ch_im_in;
|
||||
sum += inA.bytes[0] * inB.bytes[0];
|
||||
sum2 += inA.bytes[1] * inB.bytes[1];
|
||||
sum3 += inA.bytes[2] * inB.bytes[2];
|
||||
sum4 += inA.bytes[3] * inB.bytes[3];
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum2 >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum3 >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = ch_im_out & 0x3;
|
||||
while (rowCnt)
|
||||
{
|
||||
q7_t *pB = colBuffer + row_shift;
|
||||
const q7_t *pA = wt + row_shift;
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = (dim_kernel_x * dim_kernel_y);
|
||||
|
||||
row_shift += 1;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t A1 = *pA;
|
||||
q7_t B1 = *pB;
|
||||
pA += ch_im_in;
|
||||
pB += ch_im_in;
|
||||
sum += A1 * B1;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
// clear counter and pointers
|
||||
pBuffer = colBuffer;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
(void)bufferA;
|
||||
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int i_out_y, i_out_x, i_ch_out;
|
||||
int i_ker_y, i_ker_x;
|
||||
|
||||
/* do some checking here, basically ch_im_in == ch_im_out */
|
||||
if (ch_im_in != ch_im_out)
|
||||
{
|
||||
return ARM_MATH_SIZE_MISMATCH;
|
||||
}
|
||||
|
||||
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
|
||||
{
|
||||
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
|
||||
{
|
||||
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
||||
{
|
||||
// for each output
|
||||
int conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++)
|
||||
{
|
||||
for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++)
|
||||
{
|
||||
int in_row = stride_y * i_out_y + i_ker_y - padding_y;
|
||||
int in_col = stride_x * i_out_x + i_ker_x - padding_x;
|
||||
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
|
||||
{
|
||||
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *
|
||||
wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out];
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] =
|
||||
(q7_t)__SSAT((conv_out >> out_shift), 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNConv group
|
||||
*/
|
||||
@@ -0,0 +1,218 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_depthwise_conv_s8_core.c
|
||||
* Description: Depthwise convolution on im2col buffers.
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.4
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/*
|
||||
* Depthwise conv on an im2col buffer where the input channel equals
|
||||
* output channel.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row,
|
||||
const q15_t *col,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t kernel_size,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t ch_per_loop = num_ch / 4;
|
||||
|
||||
const int32_t *bias = output_bias;
|
||||
int8_t *out_tmp = out;
|
||||
|
||||
int32_t idx = 0;
|
||||
|
||||
while (ch_per_loop > 0)
|
||||
{
|
||||
int32x4_t ip_0;
|
||||
int32x4_t ip_1;
|
||||
int32_t ker_loop = kernel_size / 3;
|
||||
int32x4_t out_0 = vldrwq_s32(bias);
|
||||
int32x4_t out_1 = out_0;
|
||||
bias += 4;
|
||||
|
||||
const int32_t offset = idx * 4;
|
||||
const int8_t *row_0 = row + offset;
|
||||
const int16_t *col_0 = col + offset;
|
||||
const int16_t *col_1 = col + kernel_size * num_ch + offset;
|
||||
|
||||
int32x4_t ker_0 = vldrbq_s32(row_0);
|
||||
|
||||
while (ker_loop > 0)
|
||||
{
|
||||
const int8_t *row_1 = row_0 + num_ch;
|
||||
const int8_t *row_2 = row_0 + 2 * num_ch;
|
||||
const int32x4_t ker_1 = vldrbq_s32(row_1);
|
||||
const int32x4_t ker_2 = vldrbq_s32(row_2);
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_1);
|
||||
out_1 += vmulq_s32(ip_1, ker_1);
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_2);
|
||||
out_1 += vmulq_s32(ip_1, ker_2);
|
||||
row_0 += 3 * num_ch;
|
||||
|
||||
ker_0 = vldrbq_s32(row_0);
|
||||
ker_loop--;
|
||||
}
|
||||
|
||||
idx++;
|
||||
/* Handle tail kernel elements */
|
||||
ker_loop = kernel_size - ((kernel_size / 3) * 3);
|
||||
while (ker_loop > 0)
|
||||
{
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
col_0 += num_ch;
|
||||
col_1 += num_ch;
|
||||
|
||||
ip_0 = vldrhq_s32(col_0);
|
||||
ip_1 = vldrhq_s32(col_1);
|
||||
|
||||
row_0 += num_ch;
|
||||
ker_0 = vldrbq_s32(row_0);
|
||||
ker_loop--;
|
||||
}
|
||||
const int32x4_t mult = vldrwq_s32(out_mult);
|
||||
const int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += 4;
|
||||
out_shift += 4;
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_1 = arm_requantize_mve_32x4(out_1, mult, shift);
|
||||
|
||||
out_0 = vaddq_n_s32(out_0, out_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max));
|
||||
vstrbq_s32(out_tmp, out_0);
|
||||
|
||||
out_1 = vaddq_n_s32(out_1, out_offset);
|
||||
out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min));
|
||||
out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_s32(out_tmp + num_ch, out_1);
|
||||
|
||||
out_tmp += 4;
|
||||
ch_per_loop--;
|
||||
}
|
||||
|
||||
int32_t tail_ch = num_ch & 3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
int32_t ch_idx = (num_ch & ~3);
|
||||
int32x4_t col_0_sum;
|
||||
int32x4_t col_1_sum;
|
||||
|
||||
const int32_t single_buffer_size = kernel_size * num_ch;
|
||||
for (int i = 0; i < tail_ch; i++)
|
||||
{
|
||||
const int16_t *col_pos_0 = col + ch_idx;
|
||||
const int16_t *col_pos_1 = col_pos_0 + single_buffer_size;
|
||||
|
||||
const int8_t *row_pos = row + ch_idx;
|
||||
int32_t sum_0 = bias[i];
|
||||
int32_t sum_1 = bias[i];
|
||||
|
||||
for (int j = 0; j < kernel_size; j++)
|
||||
{
|
||||
const int8_t row_val = row_pos[j * num_ch];
|
||||
sum_0 += row_val * col_pos_0[j * num_ch];
|
||||
sum_1 += row_val * col_pos_1[j * num_ch];
|
||||
}
|
||||
col_0_sum[i] = sum_0;
|
||||
col_1_sum[i] = sum_1;
|
||||
|
||||
ch_idx++;
|
||||
}
|
||||
const mve_pred16_t p = vctp32q((uint32_t)tail_ch);
|
||||
const int32x4_t mult = vldrwq_z_s32(out_mult, p);
|
||||
const int32x4_t shift = vldrwq_z_s32(out_shift, p);
|
||||
|
||||
col_0_sum = arm_requantize_mve_32x4(col_0_sum, mult, shift);
|
||||
col_1_sum = arm_requantize_mve_32x4(col_1_sum, mult, shift);
|
||||
|
||||
col_0_sum = vaddq_n_s32(col_0_sum, out_offset);
|
||||
col_0_sum = vmaxq_s32(col_0_sum, vdupq_n_s32(activation_min));
|
||||
col_0_sum = vminq_s32(col_0_sum, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out_tmp, col_0_sum, p);
|
||||
|
||||
col_1_sum = vaddq_n_s32(col_1_sum, out_offset);
|
||||
col_1_sum = vmaxq_s32(col_1_sum, vdupq_n_s32(activation_min));
|
||||
col_1_sum = vminq_s32(col_1_sum, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out_tmp + num_ch, col_1_sum, p);
|
||||
|
||||
out_tmp += tail_ch;
|
||||
}
|
||||
|
||||
return out_tmp + num_ch;
|
||||
#else
|
||||
(void)row;
|
||||
(void)col;
|
||||
(void)num_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)kernel_size;
|
||||
(void)output_bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
@@ -0,0 +1,186 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_q7_q15.c
|
||||
* Description: Matrix-multiplication function for convolution
|
||||
*
|
||||
* $Date: January 26, 2021
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @brief Matrix-multiplication function for convolution.
|
||||
*
|
||||
* @details Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
|
||||
const q15_t *pInBuffer,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t numCol_A,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t *bias,
|
||||
q7_t *pOut)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *pOut2 = pOut + ch_im_out;
|
||||
const q7_t *pBias = bias;
|
||||
|
||||
uint16_t rowCnt = ch_im_out >> 1;
|
||||
/* this loop over rows in A */
|
||||
while (rowCnt)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = pInBuffer;
|
||||
const q15_t *pB2 = pB + numCol_A;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *pA2 = pA + numCol_A;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = numCol_A >> 2;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA11, inA12, inA21, inA22;
|
||||
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
pA = read_and_pad(pA, &inA11, &inA12);
|
||||
pA2 = read_and_pad(pA2, &inA21, &inA22);
|
||||
|
||||
sum = __SMLAD(inA11, inB1, sum);
|
||||
sum2 = __SMLAD(inA11, inB2, sum2);
|
||||
sum3 = __SMLAD(inA21, inB1, sum3);
|
||||
sum4 = __SMLAD(inA21, inB2, sum4);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA12, inB1, sum);
|
||||
sum2 = __SMLAD(inA12, inB2, sum2);
|
||||
sum3 = __SMLAD(inA22, inB1, sum3);
|
||||
sum4 = __SMLAD(inA22, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = numCol_A & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q7_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum3 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t)__SSAT((sum2 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t)__SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += numCol_A;
|
||||
rowCnt--;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
/* compute left-over row if any */
|
||||
if (ch_im_out & 0x1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = pInBuffer;
|
||||
const q15_t *pB2 = pB + numCol_A;
|
||||
|
||||
/* load the bias */
|
||||
q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = numCol_A >> 2;
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA11, inA12;
|
||||
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
pA = read_and_pad(pA, &inA11, &inA12);
|
||||
|
||||
sum = __SMLAD(inA11, inB1, sum);
|
||||
sum2 = __SMLAD(inA11, inB2, sum2);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA12, inB1, sum);
|
||||
sum2 = __SMLAD(inA12, inB2, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = numCol_A & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
*pOut2++ = (q7_t)__SSAT((sum2 >> out_shift), 8);
|
||||
}
|
||||
|
||||
pOut += ch_im_out;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return pOut;
|
||||
#else
|
||||
(void)pA;
|
||||
(void)pInBuffer;
|
||||
(void)ch_im_out;
|
||||
(void)numCol_A;
|
||||
(void)bias_shift;
|
||||
(void)out_shift;
|
||||
(void)bias;
|
||||
(void)pOut;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
||||
@@ -0,0 +1,137 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_q7_q15_reordered.c
|
||||
* Description: Matrix-multiplication function for convolution with reordered columns
|
||||
*
|
||||
* $Date: January 26, 2021
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @brief Matrix-multiplication function for convolution with re-ordered input.
|
||||
*
|
||||
* @details Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t *pA,
|
||||
const q15_t *pInBuffer,
|
||||
const uint16_t ch_im_out,
|
||||
const uint16_t numCol_A,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t *bias,
|
||||
q7_t *pOut)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *pOut2 = pOut + ch_im_out;
|
||||
int i;
|
||||
|
||||
/* this loop over rows in A */
|
||||
for (i = 0; i < ch_im_out; i += 2)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *pB = pInBuffer;
|
||||
const q15_t *pB2 = pB + numCol_A;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *pA2 = pA + numCol_A;
|
||||
|
||||
/* init the sum with bias */
|
||||
q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = numCol_A >> 2;
|
||||
/* accumulate over the vector */
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inA11, inA12, inA21, inA22;
|
||||
|
||||
q31_t inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
q31_t inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
pA = read_and_pad_reordered(pA, &inA11, &inA12);
|
||||
pA2 = read_and_pad_reordered(pA2, &inA21, &inA22);
|
||||
|
||||
sum = __SMLAD(inA11, inB1, sum);
|
||||
sum2 = __SMLAD(inA11, inB2, sum2);
|
||||
sum3 = __SMLAD(inA21, inB1, sum3);
|
||||
sum4 = __SMLAD(inA21, inB2, sum4);
|
||||
|
||||
inB1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inB2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
|
||||
sum = __SMLAD(inA12, inB1, sum);
|
||||
sum2 = __SMLAD(inA12, inB2, sum2);
|
||||
sum3 = __SMLAD(inA22, inB1, sum3);
|
||||
sum4 = __SMLAD(inA22, inB2, sum4);
|
||||
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
colCnt = numCol_A & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q15_t inB1 = *pB++;
|
||||
q7_t inA2 = *pA2++;
|
||||
q15_t inB2 = *pB2++;
|
||||
|
||||
sum += inA1 * inB1;
|
||||
sum2 += inA1 * inB2;
|
||||
sum3 += inA2 * inB1;
|
||||
sum4 += inA2 * inB2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pOut++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
*pOut++ = (q7_t)__SSAT((sum3 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t)__SSAT((sum2 >> out_shift), 8);
|
||||
*pOut2++ = (q7_t)__SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
/* skip the row computed with A2 */
|
||||
pA += numCol_A;
|
||||
} /* for over ch_im_out */
|
||||
|
||||
pOut += ch_im_out;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return pOut;
|
||||
#else
|
||||
(void)pA;
|
||||
(void)pInBuffer;
|
||||
(void)ch_im_out;
|
||||
(void)numCol_A;
|
||||
(void)bias_shift;
|
||||
(void)out_shift;
|
||||
(void)bias;
|
||||
(void)pOut;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
||||
@@ -0,0 +1,245 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_s8_s16.c
|
||||
* Description: Matrix-multiplication function for convolution
|
||||
*
|
||||
* $Date: 14. December 2021
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/*
|
||||
* Matrix-multiplication function for convolution with per-channel requantization.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a,
|
||||
const q15_t *input_b,
|
||||
const uint16_t output_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const uint16_t num_col_a,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out_0)
|
||||
{
|
||||
#if !defined(ARM_MATH_MVEI)
|
||||
/* set up the second output pointers */
|
||||
q7_t *out_1 = out_0 + output_ch;
|
||||
const int32_t *bias = output_bias;
|
||||
|
||||
uint16_t row_count = output_ch / 2;
|
||||
const q7_t *ip_a0 = input_a;
|
||||
/* this loop over rows in A */
|
||||
while (row_count)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *ip_a1 = ip_a0 + num_col_a;
|
||||
|
||||
q31_t ch_0_out_0 = 0;
|
||||
q31_t ch_0_out_1 = 0;
|
||||
q31_t ch_1_out_0 = 0;
|
||||
q31_t ch_1_out_1 = 0;
|
||||
/* Init accumulator with bias for channel N and N + 1 */
|
||||
if (bias)
|
||||
{
|
||||
ch_0_out_0 = *bias;
|
||||
ch_0_out_1 = *bias++;
|
||||
ch_1_out_0 = *bias;
|
||||
ch_1_out_1 = *bias++;
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
uint16_t col_count = num_col_a / 4;
|
||||
/* accumulate over the vector */
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02, a11, a12;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad(ip_a0, &a01, &a02);
|
||||
ip_a1 = read_and_pad(ip_a1, &a11, &a12);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
col_count = num_col_a & 0x3;
|
||||
#else
|
||||
uint16_t col_count = num_col_a;
|
||||
#endif
|
||||
while (col_count)
|
||||
{
|
||||
q7_t a0 = *ip_a0++;
|
||||
q15_t b0 = *ip_b0++;
|
||||
q7_t a1 = *ip_a1++;
|
||||
q15_t b1 = *ip_b1++;
|
||||
|
||||
ch_0_out_0 += a0 * b0;
|
||||
ch_0_out_1 += a0 * b1;
|
||||
ch_1_out_0 += a1 * b0;
|
||||
ch_1_out_1 += a1 * b1;
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift);
|
||||
ch_1_out_0 += out_offset;
|
||||
ch_1_out_0 = MAX(ch_1_out_0, activation_min);
|
||||
ch_1_out_0 = MIN(ch_1_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_1_out_0;
|
||||
|
||||
ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift);
|
||||
ch_1_out_1 += out_offset;
|
||||
ch_1_out_1 = MAX(ch_1_out_1, activation_min);
|
||||
ch_1_out_1 = MIN(ch_1_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_1_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
/* skip row */
|
||||
ip_a0 += num_col_a;
|
||||
row_count--;
|
||||
}
|
||||
|
||||
/* compute the last odd numbered row if any */
|
||||
if (output_ch & 0x1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
q31_t ch_0_out_0 = 0;
|
||||
q31_t ch_0_out_1 = 0;
|
||||
|
||||
/* load the bias */
|
||||
if (bias)
|
||||
{
|
||||
ch_0_out_0 = *bias;
|
||||
ch_0_out_1 = *bias++;
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
uint16_t col_count = num_col_a >> 2;
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad(ip_a0, &a01, &a02);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
col_count = num_col_a & 0x3;
|
||||
#else
|
||||
uint16_t col_count = num_col_a;
|
||||
#endif
|
||||
while (col_count)
|
||||
{
|
||||
q7_t a0 = *ip_a0++;
|
||||
q15_t b0 = *ip_b0++;
|
||||
q15_t b1 = *ip_b1++;
|
||||
|
||||
ch_0_out_0 += a0 * b0;
|
||||
ch_0_out_1 += a0 * b1;
|
||||
col_count--;
|
||||
}
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
}
|
||||
|
||||
out_0 += output_ch;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return out_0;
|
||||
#else
|
||||
(void)input_a;
|
||||
(void)input_b;
|
||||
(void)output_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)num_col_a;
|
||||
(void)output_bias;
|
||||
(void)out_0;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
@@ -0,0 +1,201 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_s8_s16_reordered.c
|
||||
* Description: Matrix-multiplication function for convolution with reordered columns
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/*
|
||||
* Matrix-multiplication with re-ordered input and bias inputs for convolution with per-channel
|
||||
* requantization. The re-ordering is a consequence of sign extension is done by the SXTB16 command.
|
||||
*
|
||||
* Refer header file for details. This function differs from arm_nn_mat_mult_kernel_s8_s16(), in that it uses
|
||||
* read_and_pad_reordered() instead of arm_nn_mat_mult_kernel_s8_s16(). Investigating the cycles impact and
|
||||
* unifying these two functions is a potential future improvement.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a,
|
||||
const q15_t *input_b,
|
||||
const uint16_t output_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const uint16_t num_col_a,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out_0)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP)
|
||||
/* set up the second output pointers */
|
||||
q7_t *out_1 = out_0 + output_ch;
|
||||
const int32_t *bias = output_bias;
|
||||
|
||||
uint16_t row_count = output_ch / 2;
|
||||
const q7_t *ip_a0 = input_a;
|
||||
/* this loop over rows in A */
|
||||
while (row_count)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *ip_a1 = ip_a0 + num_col_a;
|
||||
|
||||
/* Init accumulator with bias for channel N and N + 1 */
|
||||
q31_t ch_0_out_0 = *bias;
|
||||
q31_t ch_0_out_1 = *bias++;
|
||||
q31_t ch_1_out_0 = *bias;
|
||||
q31_t ch_1_out_1 = *bias++;
|
||||
|
||||
uint16_t col_count = num_col_a / 4;
|
||||
/* accumulate over the vector */
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02, a11, a12;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad_reordered(ip_a0, &a01, &a02);
|
||||
ip_a1 = read_and_pad_reordered(ip_a1, &a11, &a12);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift);
|
||||
ch_1_out_0 += out_offset;
|
||||
ch_1_out_0 = MAX(ch_1_out_0, activation_min);
|
||||
ch_1_out_0 = MIN(ch_1_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_1_out_0;
|
||||
|
||||
ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift);
|
||||
ch_1_out_1 += out_offset;
|
||||
ch_1_out_1 = MAX(ch_1_out_1, activation_min);
|
||||
ch_1_out_1 = MIN(ch_1_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_1_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
|
||||
/* skip row */
|
||||
ip_a0 += num_col_a;
|
||||
row_count--;
|
||||
}
|
||||
|
||||
if (output_ch & 1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* Init accumulator with bias for channel N + 1 */
|
||||
q31_t ch_0_out_0 = *bias;
|
||||
q31_t ch_0_out_1 = ch_0_out_0;
|
||||
|
||||
int32_t col_count = num_col_a / 4;
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad_reordered(ip_a0, &a01, &a02);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_0 += out_offset;
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q7_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
ch_0_out_1 += out_offset;
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q7_t)ch_0_out_1;
|
||||
}
|
||||
|
||||
out_0 += output_ch;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return out_0;
|
||||
#else
|
||||
(void)input_a;
|
||||
(void)input_b;
|
||||
(void)output_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)num_col_a;
|
||||
(void)output_bias;
|
||||
(void)out_0;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
@@ -0,0 +1,180 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_s8.c
|
||||
* Description: General Matrix-multiplication function
|
||||
*
|
||||
* $Date: 27. October 2021
|
||||
* $Revision: V.2.0.6
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/*
|
||||
* s8 General matrix multiplication function with per-channel requantization for upto 4 column batches.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_mat_mult_s8(const q7_t *input_row,
|
||||
const q7_t *input_col,
|
||||
const uint16_t output_ch,
|
||||
const uint16_t col_batches,
|
||||
const int32_t *output_shift,
|
||||
const int32_t *output_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t col_offset,
|
||||
const int32_t row_offset,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const uint16_t row_len,
|
||||
const int32_t *const bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
(void)row_offset;
|
||||
if (col_batches == 4)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t row_len_tmp = row_len;
|
||||
const int8_t *ip_r0 = input_row + (i_out_ch * row_len);
|
||||
const int8_t *ip_c0 = input_col;
|
||||
const int8_t *ip_c1 = input_col + row_len;
|
||||
const int8_t *ip_c2 = input_col + (2 * row_len);
|
||||
const int8_t *ip_c3 = input_col + (3 * row_len);
|
||||
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
int32_t acc_2 = 0;
|
||||
int32_t acc_3 = 0;
|
||||
const int32_t row_loop_cnt = (row_len + 7) / 8;
|
||||
|
||||
for (int i_row_loop = 0; i_row_loop < row_loop_cnt; i_row_loop++)
|
||||
{
|
||||
mve_pred16_t p = vctp16q((uint32_t)row_len_tmp);
|
||||
const int16x8_t offset = vdupq_m_n_s16(vuninitializedq_s16(), col_offset, p);
|
||||
row_len_tmp -= 8;
|
||||
|
||||
int16x8_t c0 = vldrbq_s16(ip_c0);
|
||||
ip_c0 += 8;
|
||||
c0 = vaddq_s16(c0, offset);
|
||||
|
||||
int16x8_t c1 = vldrbq_s16(ip_c1);
|
||||
ip_c1 += 8;
|
||||
c1 = vaddq_s16(c1, offset);
|
||||
|
||||
int16x8_t c2 = vldrbq_s16(ip_c2);
|
||||
ip_c2 += 8;
|
||||
c2 = vaddq_s16(c2, offset);
|
||||
|
||||
int16x8_t c3 = vldrbq_s16(ip_c3);
|
||||
ip_c3 += 8;
|
||||
c3 = vaddq_s16(c3, offset);
|
||||
|
||||
int16x8_t r0 = vldrbq_z_s16(ip_r0, p);
|
||||
ip_r0 += 8;
|
||||
|
||||
acc_0 = vmladavaq_p_s16(acc_0, r0, c0, p);
|
||||
acc_1 = vmladavaq_p_s16(acc_1, r0, c1, p);
|
||||
acc_2 = vmladavaq_p_s16(acc_2, r0, c2, p);
|
||||
acc_3 = vmladavaq_p_s16(acc_3, r0, c3, p);
|
||||
}
|
||||
|
||||
int32x4_t res = {acc_0, acc_1, acc_2, acc_3};
|
||||
if (bias)
|
||||
{
|
||||
res = vaddq_n_s32(res, bias[i_out_ch]);
|
||||
}
|
||||
res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
res = vaddq_n_s32(res, out_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(activation_min));
|
||||
res = vminq_s32(res, vdupq_n_s32(activation_max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
|
||||
vstrbq_scatter_offset_s32(&out[i_out_ch], scatter_offset, res);
|
||||
}
|
||||
out += 4 * output_ch;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i_col_batch = (col_batches & ~0x3); i_col_batch < (col_batches & 0x3); i_col_batch++)
|
||||
{
|
||||
for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
|
||||
{
|
||||
int32_t row_len_tmp = row_len;
|
||||
|
||||
const int8_t *ip_r0 = input_row + (i_out_ch * row_len);
|
||||
const int8_t *ip_c0 = input_col + (i_col_batch * row_len);
|
||||
int32_t acc_0 = 0;
|
||||
const int32_t row_loop_cnt = (row_len + 7) / 8;
|
||||
|
||||
for (int i_row_loop = 0; i_row_loop < row_loop_cnt; i_row_loop++)
|
||||
{
|
||||
const mve_pred16_t p = vctp16q((uint32_t)row_len_tmp);
|
||||
const int16x8_t offset = vdupq_m_n_s16(vuninitializedq_s16(), col_offset, p);
|
||||
row_len_tmp -= 8;
|
||||
|
||||
int16x8_t c0 = vldrbq_s16(ip_c0);
|
||||
ip_c0 += 8;
|
||||
c0 = vaddq_s16(c0, offset);
|
||||
|
||||
int16x8_t r0 = vldrbq_z_s16(ip_r0, p);
|
||||
ip_r0 += 8;
|
||||
acc_0 = vmladavaq_p_s16(acc_0, r0, c0, p);
|
||||
}
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_0 += bias[i_out_ch];
|
||||
}
|
||||
acc_0 = arm_nn_requantize(acc_0, output_mult[i_out_ch], output_shift[i_out_ch]);
|
||||
acc_0 += out_offset;
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
acc_0 = MIN(acc_0, activation_max);
|
||||
out[i_out_ch] = (q7_t)acc_0;
|
||||
}
|
||||
out += output_ch;
|
||||
}
|
||||
}
|
||||
return out;
|
||||
|
||||
#else
|
||||
(void)input_row;
|
||||
(void)input_col;
|
||||
(void)output_ch;
|
||||
(void)col_batches;
|
||||
(void)output_shift;
|
||||
(void)output_mult;
|
||||
(void)out_offset;
|
||||
(void)col_offset;
|
||||
(void)row_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)row_len;
|
||||
(void)bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
@@ -0,0 +1,21 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC} arm_fully_connected_s16.c)
|
||||
|
||||
@@ -0,0 +1,197 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_mat_q7_vec_q15.c
|
||||
* Description: Mixed Q15-Q7 fully-connected layer function
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Mixed Q15-Q7 fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
* Q7_Q15 version of the fully connected layer
|
||||
*
|
||||
* Weights are in q7_t and Activations are in q15_t
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
|
||||
const q7_t *pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t *bias,
|
||||
q15_t *pOut,
|
||||
q15_t *vec_buffer)
|
||||
{
|
||||
(void)vec_buffer;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
const q7_t *pB2;
|
||||
q15_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA = pV;
|
||||
|
||||
uint16_t rowCnt = num_of_rows >> 1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
pB2 = pB + dim_vec;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV, inM11, inM12, inM21, inM22;
|
||||
pB = read_and_pad(pB, &inM11, &inM12);
|
||||
pB2 = read_and_pad(pB2, &inM21, &inM22);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM11, sum);
|
||||
sum2 = __SMLAD(inV, inM21, sum2);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM12, sum);
|
||||
sum2 = __SMLAD(inV, inM22, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
q7_t inM2 = *pB2++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16));
|
||||
|
||||
/*adjust the pointers and counters */
|
||||
pB += dim_vec;
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
int i, j;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (i = 0; i < num_of_rows; i++)
|
||||
{
|
||||
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
ip_out += pV[j] * pM[i * dim_vec + j];
|
||||
}
|
||||
pOut[i] = (q15_t)__SSAT((ip_out >> out_shift), 16);
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,417 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_mat_q7_vec_q15_opt.c
|
||||
* Description: Mixed Q15-Q7 opt fully-connected layer function
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Mixed Q15-Q7 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
* Q7_Q15 version of the fully connected layer
|
||||
*
|
||||
* Weights are in q7_t and Activations are in q15_t
|
||||
*
|
||||
* Limitation: x4 version requires weight reordering to work
|
||||
*
|
||||
* Here we use only one pointer to read 4 rows in the weight
|
||||
* matrix. So if the original q7_t matrix looks like this:
|
||||
*
|
||||
* | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
|
||||
*
|
||||
* | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
|
||||
*
|
||||
* | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
|
||||
*
|
||||
* | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
|
||||
*
|
||||
* | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
|
||||
*
|
||||
* | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
* We operates on multiple-of-4 rows, so the first four rows becomes
|
||||
*
|
||||
* | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 |
|
||||
*
|
||||
* | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 |
|
||||
*
|
||||
* | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 |
|
||||
*
|
||||
* The column left over will be in-order.
|
||||
* which is:
|
||||
* | a17 | a27 | a37 | a47 |
|
||||
*
|
||||
* For the left-over rows, we do 1x1 computation, so the data remains
|
||||
* as its original order.
|
||||
*
|
||||
* So the stored weight matrix looks like this:
|
||||
*
|
||||
* | a11 | a21 | a12 | a22 | a31 | a41 |
|
||||
*
|
||||
* | a32 | a42 | a13 | a23 | a14 | a24 |
|
||||
*
|
||||
* | a33 | a43 | a34 | a44 | a15 | a25 |
|
||||
*
|
||||
* | a16 | a26 | a35 | a45 | a36 | a46 |
|
||||
*
|
||||
* | a17 | a27 | a37 | a47 | a51 | a52 |
|
||||
*
|
||||
* | a53 | a54 | a55 | a56 | a57 | a61 |
|
||||
*
|
||||
* | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
|
||||
const q7_t *pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t *bias,
|
||||
q15_t *pOut,
|
||||
q15_t *vec_buffer)
|
||||
{
|
||||
|
||||
(void)vec_buffer;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
q15_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA = pV;
|
||||
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM11, inV, sum);
|
||||
sum2 = __SMLAD(inM12, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM13, inV, sum3);
|
||||
sum4 = __SMLAD(inM14, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = *__SIMD32(pA)++;
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM12, inV, sum);
|
||||
sum2 = __SMLAD(inM11, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM14, inV, sum3);
|
||||
sum4 = __SMLAD(inM13, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* register needed:
|
||||
* loop counter: colCnt
|
||||
* accumulators: sum, sum2, sum3, sum4
|
||||
* pointers: pB, pA
|
||||
* weight data: inM11, inM12, inM13, inM14
|
||||
* activation data: inV
|
||||
*/
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #4\n"
|
||||
"ldr.w r1, [%[pB]], #8\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r1, %[sum]\n"
|
||||
"smlad %[sum2], r4, r0, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r3, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r2, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt)
|
||||
: "r0", "r1", "r2", "r3", "r4");
|
||||
#else
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #4\n"
|
||||
"ldr.w r1, [%[pB]], #8\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt)
|
||||
: "r0", "r1", "r2", "r3", "r4");
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
q7_t inM2 = *pB++;
|
||||
q7_t inM3 = *pB++;
|
||||
q7_t inM4 = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
sum3 += inV * inM3;
|
||||
sum4 += inV * inM4;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum3 >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum4 >> out_shift), 16));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
const q7_t *pB = pM;
|
||||
const q15_t *pA;
|
||||
q15_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inA2 = *pA++;
|
||||
|
||||
q7_t inB1 = *pB++;
|
||||
q7_t inB3 = *pB++;
|
||||
q7_t inB2 = *pB++;
|
||||
q7_t inB4 = *pB++;
|
||||
|
||||
sum += inA1 * inB1 + inA2 * inB2;
|
||||
sum2 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum3 += inA1 * inB1 + inA2 * inB2;
|
||||
sum4 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
sum += inA * inB;
|
||||
inB = *pB++;
|
||||
sum2 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum3 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum4 += inA * inB;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pO++ = (q15_t)__SSAT((sum >> out_shift), 16);
|
||||
*pO++ = (q15_t)__SSAT((sum2 >> out_shift), 16);
|
||||
*pO++ = (q15_t)__SSAT((sum3 >> out_shift), 16);
|
||||
*pO++ = (q15_t)__SSAT((sum4 >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
int j;
|
||||
|
||||
pA = pV;
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
ip_out += inA * inB;
|
||||
}
|
||||
*pO++ = (q15_t)__SSAT((ip_out >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,195 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q15.c
|
||||
* Description: Q15 basic fully-connected layer function
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q15(const q15_t *pV,
|
||||
const q15_t *pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q15_t *bias,
|
||||
q15_t *pOut,
|
||||
q15_t *vec_buffer)
|
||||
{
|
||||
(void)vec_buffer;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q15_t *pB = pM;
|
||||
const q15_t *pB2 = pB + dim_vec;
|
||||
q15_t *pO = pOut;
|
||||
const q15_t *pA;
|
||||
const q15_t *pBias = bias;
|
||||
uint16_t rowCnt = num_of_rows >> 1;
|
||||
|
||||
/* this loop loops over different output */
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
pB2 = pB + dim_vec;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inM1, inM2;
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
inM2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
sum2 = __SMLAD(inV1, inM2, sum2);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
inM2 = arm_nn_read_q15x2_ia(&pB2);
|
||||
sum2 = __SMLAD(inV1, inM2, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
q15_t inM2 = *pB2++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
pB = pB + dim_vec;
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = num_of_rows & 0x1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inM1;
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
int i, j;
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (i = 0; i < num_of_rows; i++)
|
||||
{
|
||||
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
ip_out += pV[j] * pM[i * dim_vec + j];
|
||||
}
|
||||
pOut[i] = (q15_t)__SSAT((ip_out >> out_shift), 16);
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to application */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,336 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q15_opt.c
|
||||
* Description: Q15 opt fully-connected layer function
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: 0
|
||||
*
|
||||
* Here we use only one pointer to read 4 rows in the weight
|
||||
* matrix. So if the original matrix looks like this:
|
||||
*
|
||||
* | a11 | a12 | a13 |
|
||||
*
|
||||
* | a21 | a22 | a23 |
|
||||
*
|
||||
* | a31 | a32 | a33 |
|
||||
*
|
||||
* | a41 | a42 | a43 |
|
||||
*
|
||||
* | a51 | a52 | a53 |
|
||||
*
|
||||
* | a61 | a62 | a63 |
|
||||
*
|
||||
* We operates on multiple-of-4 rows, so the first four rows becomes
|
||||
*
|
||||
* | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
|
||||
*
|
||||
* | a13 | a23 | a33 | a43 |
|
||||
*
|
||||
* Remaining rows are kept the same original order.
|
||||
*
|
||||
* So the stored weight matrix looks like this:
|
||||
*
|
||||
*
|
||||
* | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
|
||||
*
|
||||
* | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 |
|
||||
*
|
||||
* | a62 | a63 |
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q15_opt(const q15_t *pV,
|
||||
const q15_t *pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q15_t *bias,
|
||||
q15_t *pOut,
|
||||
q15_t *vec_buffer)
|
||||
{
|
||||
(void)vec_buffer;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q15_t *pB = pM;
|
||||
q15_t *pO = pOut;
|
||||
const q15_t *pBias = bias;
|
||||
const q15_t *pA = pV;
|
||||
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum = __SMLAD(inV, inM11, sum);
|
||||
inM12 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum2 = __SMLAD(inV, inM12, sum2);
|
||||
inM13 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum3 = __SMLAD(inV, inM13, sum3);
|
||||
inM14 = arm_nn_read_q15x2_ia(&pB);
|
||||
sum4 = __SMLAD(inV, inM14, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* register needed:
|
||||
* loop counter: colCnt
|
||||
* accumulators: sum, sum2, sum3, sum4
|
||||
* pointers: pB, pA
|
||||
* weight data: inM11, inM12, inM13, inM14
|
||||
* activation data: inV
|
||||
*/
|
||||
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #4\n"
|
||||
"ldr.w r0, [%[pB]], #16\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"ldr.w r1, [%[pB] , #-12]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r2, [%[pB] , #-8]\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"ldr.w r3, [%[pB] , #-4]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt)
|
||||
: "r0", "r1", "r2", "r3", "r4");
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
q15_t inM2 = *pB++;
|
||||
q15_t inM3 = *pB++;
|
||||
q15_t inM4 = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
sum3 += inV * inM3;
|
||||
sum4 += inV * inM4;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum3 >> out_shift), 16));
|
||||
*pO++ = (q15_t)(__SSAT((sum4 >> out_shift), 16));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM1, inM2;
|
||||
|
||||
inM1 = arm_nn_read_q15x2_ia(&pB);
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM1, sum);
|
||||
|
||||
inM2 = arm_nn_read_q15x2_ia(&pB);
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM2, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q15_t)(__SSAT((sum >> out_shift), 16));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
const q15_t *pB = pM;
|
||||
const q15_t *pA;
|
||||
q15_t *pO = pOut;
|
||||
const q15_t *pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 1;
|
||||
|
||||
pA = pV;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA1 = *pA++;
|
||||
q15_t inA2 = *pA++;
|
||||
|
||||
q15_t inB1 = *pB++;
|
||||
q15_t inB2 = *pB++;
|
||||
sum += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB2 = *pB++;
|
||||
sum2 += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB2 = *pB++;
|
||||
sum3 += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB2 = *pB++;
|
||||
sum4 += inA1 * inB1 + inA2 * inB2;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x1;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q15_t inB = *pB++;
|
||||
sum += inA * inB;
|
||||
inB = *pB++;
|
||||
sum2 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum3 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum4 += inA * inB;
|
||||
colCnt--;
|
||||
}
|
||||
*pO++ = (q15_t)__SSAT((sum >> out_shift), 16);
|
||||
*pO++ = (q15_t)__SSAT((sum2 >> out_shift), 16);
|
||||
*pO++ = (q15_t)__SSAT((sum3 >> out_shift), 16);
|
||||
*pO++ = (q15_t)__SSAT((sum4 >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
int j;
|
||||
|
||||
pA = pV;
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
q15_t inA = *pA++;
|
||||
q15_t inB = *pB++;
|
||||
ip_out += inA * inB;
|
||||
}
|
||||
*pO++ = (q15_t)__SSAT((ip_out >> out_shift), 16);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,200 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q7.c
|
||||
* Description: Q7 basic fully-connected layer function
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 basic fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: dim_vec
|
||||
*
|
||||
* This basic function is designed to work with regular weight
|
||||
* matrix without interleaving.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q7(const q7_t *pV,
|
||||
const q7_t *pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t *bias,
|
||||
q7_t *pOut,
|
||||
q15_t *vec_buffer)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
const q7_t *pB2;
|
||||
q7_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA;
|
||||
uint16_t rowCnt = num_of_rows >> 1;
|
||||
|
||||
/* expand the vector into the buffer */
|
||||
arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = vec_buffer;
|
||||
pB2 = pB + dim_vec;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV, inM11, inM12, inM21, inM22;
|
||||
pB = read_and_pad_reordered(pB, &inM11, &inM12);
|
||||
pB2 = read_and_pad_reordered(pB2, &inM21, &inM22);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM11, sum);
|
||||
sum2 = __SMLAD(inV, inM21, sum2);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
|
||||
sum = __SMLAD(inV, inM12, sum);
|
||||
sum2 = __SMLAD(inV, inM22, sum2);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
q15_t inM2 = *pB2++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q7_t)(__SSAT((sum >> out_shift), 8));
|
||||
*pO++ = (q7_t)(__SSAT((sum2 >> out_shift), 8));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
pB += dim_vec;
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x1;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
pA = vec_buffer;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad_reordered(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inV = *pA++;
|
||||
q15_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q7_t)(__SSAT((sum >> out_shift), 8));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
(void)vec_buffer;
|
||||
int i, j;
|
||||
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
for (i = 0; i < num_of_rows; i++)
|
||||
{
|
||||
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
ip_out += pV[j] * pM[i * dim_vec + j];
|
||||
}
|
||||
pOut[i] = (q7_t)__SSAT((ip_out >> out_shift), 8);
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,495 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_q7_opt.c
|
||||
* Description: Q7 basic fully-connected layer function
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 opt fully-connected layer function
|
||||
* @param[in] pV pointer to input vector
|
||||
* @param[in] pM pointer to matrix weights
|
||||
* @param[in] dim_vec length of the vector
|
||||
* @param[in] num_of_rows number of rows in weight matrix
|
||||
* @param[in] bias_shift amount of left-shift for bias
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] bias pointer to bias
|
||||
* @param[in,out] pOut pointer to output vector
|
||||
* @param[in,out] vec_buffer pointer to buffer space for input
|
||||
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* vec_buffer size: dim_vec
|
||||
*
|
||||
* This opt function is designed to work with interleaved weight
|
||||
* matrix. The vector input is assumed in q7_t format, we call
|
||||
* arm_q7_to_q15_no_shift_shuffle function to expand into
|
||||
* q15_t format with certain weight re-ordering, refer to the function
|
||||
* comments for more details.
|
||||
* Here we use only one pointer to read 4 rows in the weight
|
||||
* matrix. So if the original q7_t matrix looks like this:
|
||||
*
|
||||
* | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
|
||||
*
|
||||
* | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
|
||||
*
|
||||
* | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
|
||||
*
|
||||
* | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
|
||||
*
|
||||
* | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
|
||||
*
|
||||
* | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
*
|
||||
* We operates on multiple-of-4 rows, so the first four rows becomes
|
||||
*
|
||||
* | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 |
|
||||
*
|
||||
* | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 |
|
||||
*
|
||||
* | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 |
|
||||
*
|
||||
* So within the kernel, we first read the re-ordered vector in as:
|
||||
*
|
||||
* | b1 | b3 | and | b2 | b4 |
|
||||
*
|
||||
* the four q31_t weights will look like
|
||||
*
|
||||
* | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 |
|
||||
*
|
||||
* | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 |
|
||||
*
|
||||
* The column left over will be in-order.
|
||||
* which is:
|
||||
*
|
||||
* | a17 | a27 | a37 | a47 |
|
||||
*
|
||||
* For the left-over rows, we do 1x1 computation, so the data remains
|
||||
* as its original order.
|
||||
*
|
||||
* So the stored weight matrix looks like this:
|
||||
*
|
||||
* | a11 | a21 | a13 | a23 | a31 | a41 |
|
||||
*
|
||||
* | a33 | a43 | a12 | a22 | a14 | a24 |
|
||||
*
|
||||
* | a32 | a42 | a34 | a44 | a15 | a25 |
|
||||
*
|
||||
* | a35 | a45 | a16 | a26 | a36 | a46 |
|
||||
*
|
||||
* | a17 | a27 | a37 | a47 | a51 | a52 |
|
||||
*
|
||||
* | a53 | a54 | a55 | a56 | a57 | a61 |
|
||||
*
|
||||
* | a62 | a63 | a64 | a65 | a66 | a67 |
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_q7_opt(const q7_t *pV,
|
||||
const q7_t *pM,
|
||||
const uint16_t dim_vec,
|
||||
const uint16_t num_of_rows,
|
||||
const uint16_t bias_shift,
|
||||
const uint16_t out_shift,
|
||||
const q7_t *bias,
|
||||
q7_t *pOut,
|
||||
q15_t *vec_buffer)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
const q7_t *pB = pM;
|
||||
q7_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
const q15_t *pA;
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
|
||||
arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = vec_buffer;
|
||||
|
||||
#ifdef USE_INTRINSIC
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM11, inV, sum);
|
||||
sum2 = __SMLAD(inM12, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM13, inV, sum3);
|
||||
sum4 = __SMLAD(inM14, inV, sum4);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM11, inV, sum);
|
||||
sum2 = __SMLAD(inM12, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM13, inV, sum3);
|
||||
sum4 = __SMLAD(inM14, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#else
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inM11, inM12, inM13, inM14;
|
||||
q31_t inV;
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM12, inV, sum);
|
||||
sum2 = __SMLAD(inM11, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM14, inV, sum3);
|
||||
sum4 = __SMLAD(inM13, inV, sum4);
|
||||
|
||||
inV = arm_nn_read_q15x2_ia(&pA);
|
||||
inM11 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM12 = __SXTB16(__ROR(inM11, 8));
|
||||
inM11 = __SXTB16(inM11);
|
||||
sum = __SMLAD(inM12, inV, sum);
|
||||
sum2 = __SMLAD(inM11, inV, sum2);
|
||||
inM13 = arm_nn_read_q7x4_ia(&pB);
|
||||
inM14 = __SXTB16(__ROR(inM13, 8));
|
||||
inM13 = __SXTB16(inM13);
|
||||
sum3 = __SMLAD(inM14, inV, sum3);
|
||||
sum4 = __SMLAD(inM13, inV, sum4);
|
||||
colCnt--;
|
||||
}
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* register needed:
|
||||
* loop counter: colCnt
|
||||
* accumulators: sum, sum2, sum3, sum4
|
||||
* pointers: pB, pA
|
||||
* weight data: inM11, inM12, inM13, inM14
|
||||
* activation data: inV
|
||||
*/
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #8\n"
|
||||
"ldr.w r1, [%[pB]], #16\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r1, %[sum]\n"
|
||||
"smlad %[sum2], r4, r0, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-12]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r3, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r2, %[sum4]\n"
|
||||
"ldr.w r4, [%[pA], #-4]\n"
|
||||
"ldr.w r1, [%[pB], #-8]\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r1, %[sum]\n"
|
||||
"smlad %[sum2], r4, r0, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r3, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r2, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt)
|
||||
: "r0", "r1", "r2", "r3", "r4");
|
||||
#else
|
||||
asm volatile("COL_LOOP_%=:\n"
|
||||
"ldr.w r4, [%[pA]], #8\n"
|
||||
"ldr.w r1, [%[pB]], #16\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-12]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"ldr.w r4, [%[pA], #-4]\n"
|
||||
"ldr.w r1, [%[pB], #-8]\n"
|
||||
"mov.w r0, r1, ror #8\n"
|
||||
"sxtb16 r0, r0\n"
|
||||
"sxtb16 r1, r1\n"
|
||||
"smlad %[sum], r4, r0, %[sum]\n"
|
||||
"smlad %[sum2], r4, r1, %[sum2]\n"
|
||||
"ldr.w r3, [%[pB], #-4]\n"
|
||||
"mov.w r2, r3, ror #8\n"
|
||||
"sxtb16 r2, r2\n"
|
||||
"sxtb16 r3, r3\n"
|
||||
"smlad %[sum3], r4, r2, %[sum3]\n"
|
||||
"smlad %[sum4], r4, r3, %[sum4]\n"
|
||||
"subs %[colCnt], #1\n"
|
||||
"bne COL_LOOP_%=\n"
|
||||
: [ sum ] "+r"(sum),
|
||||
[ sum2 ] "+r"(sum2),
|
||||
[ sum3 ] "+r"(sum3),
|
||||
[ sum4 ] "+r"(sum4),
|
||||
[ pB ] "+r"(pB),
|
||||
[ pA ] "+r"(pA)
|
||||
: [ colCnt ] "r"(colCnt)
|
||||
: "r0", "r1", "r2", "r3", "r4");
|
||||
#endif /* ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
#endif /* USE_INTRINSIC */
|
||||
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
q7_t inM2 = *pB++;
|
||||
q7_t inM3 = *pB++;
|
||||
q7_t inM4 = *pB++;
|
||||
|
||||
sum += inV * inM;
|
||||
sum2 += inV * inM2;
|
||||
sum3 += inV * inM3;
|
||||
sum4 += inV * inM4;
|
||||
colCnt--;
|
||||
} /* while over colCnt */
|
||||
*pO++ = (q7_t)(__SSAT((sum >> out_shift), 8));
|
||||
*pO++ = (q7_t)(__SSAT((sum2 >> out_shift), 8));
|
||||
*pO++ = (q7_t)(__SSAT((sum3 >> out_shift), 8));
|
||||
*pO++ = (q7_t)(__SSAT((sum4 >> out_shift), 8));
|
||||
|
||||
/* adjust the pointers and counters */
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
/* left-over part of the rows */
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = vec_buffer;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q31_t inV1, inV2, inM11, inM12;
|
||||
|
||||
pB = read_and_pad_reordered(pB, &inM11, &inM12);
|
||||
|
||||
inV1 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV1, inM11, sum);
|
||||
|
||||
inV2 = arm_nn_read_q15x2_ia(&pA);
|
||||
sum = __SMLAD(inV2, inM12, sum);
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
/* left-over of the vector */
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q15_t inV = *pA++;
|
||||
q7_t inM = *pB++;
|
||||
sum += inV * inM;
|
||||
colCnt--;
|
||||
}
|
||||
|
||||
*pO++ = (q7_t)(__SSAT((sum >> out_shift), 8));
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
(void)vec_buffer;
|
||||
uint16_t rowCnt = num_of_rows >> 2;
|
||||
const q7_t *pB = pM;
|
||||
const q7_t *pA;
|
||||
q7_t *pO = pOut;
|
||||
const q7_t *pBias = bias;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
uint16_t colCnt = dim_vec >> 2;
|
||||
|
||||
pA = pV;
|
||||
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA1 = *pA++;
|
||||
q7_t inA3 = *pA++;
|
||||
q7_t inA2 = *pA++;
|
||||
q7_t inA4 = *pA++;
|
||||
|
||||
q7_t inB1 = *pB++;
|
||||
q7_t inB3 = *pB++;
|
||||
q7_t inB2 = *pB++;
|
||||
q7_t inB4 = *pB++;
|
||||
|
||||
sum += inA1 * inB1 + inA2 * inB2;
|
||||
sum2 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum3 += inA1 * inB1 + inA2 * inB2;
|
||||
sum4 += inA1 * inB3 + inA2 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum += inA3 * inB1 + inA4 * inB2;
|
||||
sum2 += inA3 * inB3 + inA4 * inB4;
|
||||
|
||||
inB1 = *pB++;
|
||||
inB3 = *pB++;
|
||||
inB2 = *pB++;
|
||||
inB4 = *pB++;
|
||||
|
||||
sum3 += inA3 * inB1 + inA4 * inB2;
|
||||
sum4 += inA3 * inB3 + inA4 * inB4;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
colCnt = dim_vec & 0x3;
|
||||
while (colCnt)
|
||||
{
|
||||
q7_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
sum += inA * inB;
|
||||
inB = *pB++;
|
||||
sum2 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum3 += inA * inB;
|
||||
inB = *pB++;
|
||||
sum4 += inA * inB;
|
||||
|
||||
colCnt--;
|
||||
}
|
||||
*pO++ = (q7_t)__SSAT((sum >> out_shift), 8);
|
||||
*pO++ = (q7_t)__SSAT((sum2 >> out_shift), 8);
|
||||
*pO++ = (q7_t)__SSAT((sum3 >> out_shift), 8);
|
||||
*pO++ = (q7_t)__SSAT((sum4 >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
rowCnt = num_of_rows & 0x3;
|
||||
|
||||
while (rowCnt)
|
||||
{
|
||||
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||||
|
||||
int j;
|
||||
|
||||
pA = pV;
|
||||
for (j = 0; j < dim_vec; j++)
|
||||
{
|
||||
q7_t inA = *pA++;
|
||||
q7_t inB = *pB++;
|
||||
ip_out += inA * inB;
|
||||
}
|
||||
*pO++ = (q7_t)__SSAT((ip_out >> out_shift), 8);
|
||||
|
||||
rowCnt--;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
|
||||
/* Return to ARM_MATH_SUCCESS */
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,97 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_s16
|
||||
* Description: Fully connected function compatible with TF Lite.
|
||||
*
|
||||
* $Date: 3. August 2021
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M and Cortex-A cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* S16 basic fully-connected and matrix multiplication layer function for TensorFlow Lite
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_fc_params *fc_params,
|
||||
const cmsis_nn_per_tensor_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q15_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int64_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q15_t *output)
|
||||
{
|
||||
(void)bias_dims;
|
||||
(void)ctx;
|
||||
(void)fc_params->filter_offset;
|
||||
|
||||
int32_t batch_cnt = input_dims->n;
|
||||
|
||||
const q31_t reduced_multiplier = REDUCE_MULTIPLIER(quant_params->multiplier);
|
||||
|
||||
while (batch_cnt)
|
||||
{
|
||||
arm_nn_vec_mat_mult_t_s16(input,
|
||||
kernel,
|
||||
bias,
|
||||
output,
|
||||
reduced_multiplier,
|
||||
quant_params->shift,
|
||||
filter_dims->n, /* col_dim or accum_depth */
|
||||
output_dims->c, /* row_dim or output_depth */
|
||||
fc_params->activation.min,
|
||||
fc_params->activation.max);
|
||||
input += filter_dims->n;
|
||||
output += output_dims->c;
|
||||
batch_cnt--;
|
||||
}
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
@@ -0,0 +1,99 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_fully_connected_s8
|
||||
* Description: Fully connected function compatible with TF Lite.
|
||||
*
|
||||
* $Date: 8 April 2022
|
||||
* $Revision: V.3.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M and Cortex-A cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FC
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* S8 basic fully-connected and matrix multiplication layer function for TensorFlow Lite
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_fc_params *fc_params,
|
||||
const cmsis_nn_per_tensor_quant_params *quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const q7_t *kernel,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const int32_t *bias,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output)
|
||||
{
|
||||
(void)bias_dims;
|
||||
(void)ctx;
|
||||
(void)fc_params->filter_offset;
|
||||
|
||||
int32_t batch_cnt = input_dims->n;
|
||||
|
||||
while (batch_cnt)
|
||||
{
|
||||
arm_nn_vec_mat_mult_t_s8(input,
|
||||
kernel,
|
||||
bias,
|
||||
output,
|
||||
fc_params->input_offset,
|
||||
0,
|
||||
fc_params->output_offset,
|
||||
quant_params->multiplier,
|
||||
quant_params->shift,
|
||||
filter_dims->n, /* col_dim or accum_depth */
|
||||
output_dims->c, /* row_dim or output_depth */
|
||||
fc_params->activation.min,
|
||||
fc_params->activation.max,
|
||||
1L);
|
||||
input += filter_dims->n;
|
||||
output += output_dims->c;
|
||||
batch_cnt--;
|
||||
}
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims)
|
||||
{
|
||||
(void)filter_dims;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FC group
|
||||
*/
|
||||
26
Drivers/CMSIS/NN/Source/NNSupportFunctions/CMakeLists.txt
Normal file
26
Drivers/CMSIS/NN/Source/NNSupportFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,26 @@
|
||||
#
|
||||
# Copyright (c) 2019-2022 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC} arm_q7_to_q15_with_offset.c
|
||||
arm_nn_mat_mul_kernel_s16.c
|
||||
arm_q7_to_q15_with_offset.c
|
||||
arm_nn_mat_mul_kernel_s16.c
|
||||
arm_nn_vec_mat_mult_t_s16.c
|
||||
arm_q7_to_q15_no_shift.c)
|
||||
|
||||
@@ -0,0 +1,85 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_accumulate_q7_to_q15.c
|
||||
* Description: Accumulate q7 vector into q15 one.
|
||||
*
|
||||
* $Date: 20 July 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* pSrc Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_nn_accumulate_q7_to_q15(q15_t *pDst, const q7_t *pSrc, uint32_t length)
|
||||
{
|
||||
q15_t *pCnt = pDst;
|
||||
const q7_t *pV = pSrc;
|
||||
int32_t count = length;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
q31_t v1, v2, vo1, vo2;
|
||||
count = length >> 2;
|
||||
q31_t in;
|
||||
|
||||
while (count > 0l)
|
||||
{
|
||||
q31_t value = arm_nn_read_q7x4_ia(&pV);
|
||||
v1 = __SXTB16(__ROR((uint32_t)value, 8));
|
||||
v2 = __SXTB16(value);
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
vo2 = (q31_t)__PKHTB(v1, v2, 16);
|
||||
vo1 = (q31_t)__PKHBT(v2, v1, 16);
|
||||
#else
|
||||
vo1 = (q31_t)__PKHTB(v1, v2, 16);
|
||||
vo2 = (q31_t)__PKHBT(v2, v1, 16);
|
||||
#endif
|
||||
|
||||
in = arm_nn_read_q15x2(pCnt);
|
||||
arm_nn_write_q15x2_ia(&pCnt, __QADD16(vo1, in));
|
||||
|
||||
in = arm_nn_read_q15x2(pCnt);
|
||||
arm_nn_write_q15x2_ia(&pCnt, __QADD16(vo2, in));
|
||||
|
||||
count--;
|
||||
}
|
||||
count = length & 0x3;
|
||||
#endif
|
||||
while (count > 0l)
|
||||
{
|
||||
*pCnt++ += *pV++;
|
||||
count--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
82
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c
Normal file
82
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c
Normal file
@@ -0,0 +1,82 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_add_q7.c
|
||||
* Description: Non saturating addition of elements of a q7 vector.
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nn_tables.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size)
|
||||
{
|
||||
uint32_t block_count;
|
||||
q31_t result = 0;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Loop unrolling: Compute 4 outputs at a time */
|
||||
block_count = block_size >> 2U;
|
||||
|
||||
while (block_count > 0U)
|
||||
{
|
||||
const int32_t mult_q15x2 = (1UL << 16) | 1UL;
|
||||
q31_t in_q7x4 = arm_nn_read_q7x4_ia(&input);
|
||||
q31_t temp_q15x2 = __SXTAB16(__SXTB16(in_q7x4), __ROR((uint32_t)in_q7x4, 8));
|
||||
|
||||
result = __SMLAD(temp_q15x2, mult_q15x2, result);
|
||||
|
||||
/* Decrement loop counter */
|
||||
block_count--;
|
||||
}
|
||||
|
||||
/* Loop unrolling: Compute remaining outputs */
|
||||
block_count = block_size & 0x3;
|
||||
#else
|
||||
block_count = block_size;
|
||||
#endif
|
||||
while (block_count > 0U)
|
||||
{
|
||||
/* Add and store result in destination buffer. */
|
||||
result += *input++;
|
||||
|
||||
/* Decrement loop counter */
|
||||
block_count--;
|
||||
}
|
||||
|
||||
*output = result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,168 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_depthwise_conv_nt_t_padded_s8.c
|
||||
* Description: Depthwise convolution with padded matrices.
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M processors with MVE extension
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Depthwise convolution of transposed rhs matrix with 4 lhs matrices. One or more of the rhs matrices are padded.
|
||||
* Dimensions are the same for lhs and rhs.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const int32_t input_offset,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t row_x_col,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t loop_count = (num_ch + 3) / 4;
|
||||
const int32_t *bias = output_bias;
|
||||
uint32_t num_ch_to_process = num_ch;
|
||||
|
||||
for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count;
|
||||
num_ch_to_process -= 4, out += 4, offset += 4, i_loop_cnt++)
|
||||
{
|
||||
int32x4_t out_0 = vldrwq_s32(bias);
|
||||
int32x4_t out_1 = out_0;
|
||||
int32x4_t out_2 = out_0;
|
||||
int32x4_t out_3 = out_0;
|
||||
bias += 4;
|
||||
|
||||
const int8_t *rhs_0 = rhs + offset;
|
||||
const int8_t *lhs_0 = lhs + offset;
|
||||
const int8_t *lhs_1 = lhs + row_x_col * num_ch + offset;
|
||||
const int8_t *lhs_2 = lhs + (row_x_col * num_ch * 2) + offset;
|
||||
const int8_t *lhs_3 = lhs + (row_x_col * num_ch * 3) + offset;
|
||||
|
||||
for (int i_row_x_col = 0; i_row_x_col < row_x_col; i_row_x_col++)
|
||||
{
|
||||
const int32x4_t ker_0 = vldrbq_s32(rhs_0);
|
||||
|
||||
int32x4_t ip_0 = vldrbq_s32(lhs_0);
|
||||
ip_0 = vaddq_n_s32(ip_0, input_offset);
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
|
||||
int32x4_t ip_1 = vldrbq_s32(lhs_1);
|
||||
ip_1 = vaddq_n_s32(ip_1, input_offset);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
int32x4_t ip_2 = vldrbq_s32(lhs_2);
|
||||
ip_2 = vaddq_n_s32(ip_2, input_offset);
|
||||
out_2 += vmulq_s32(ip_2, ker_0);
|
||||
|
||||
int32x4_t ip_3 = vldrbq_s32(lhs_3);
|
||||
ip_3 = vaddq_n_s32(ip_3, input_offset);
|
||||
|
||||
out_3 += vmulq_s32(ip_3, ker_0);
|
||||
|
||||
lhs_0 += num_ch;
|
||||
lhs_1 += num_ch;
|
||||
lhs_2 += num_ch;
|
||||
lhs_3 += num_ch;
|
||||
|
||||
rhs_0 += num_ch;
|
||||
}
|
||||
|
||||
const int32x4_t mult = vldrwq_s32(out_mult);
|
||||
const int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += 4;
|
||||
out_shift += 4;
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_0 = vaddq_n_s32(out_0, out_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max));
|
||||
mve_pred16_t p = vctp32q(num_ch_to_process);
|
||||
vstrbq_p_s32(out, out_0, p);
|
||||
|
||||
out_1 = arm_requantize_mve_32x4(out_1, mult, shift);
|
||||
out_1 = vaddq_n_s32(out_1, out_offset);
|
||||
out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min));
|
||||
out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + num_ch, out_1, p);
|
||||
|
||||
out_2 = arm_requantize_mve_32x4(out_2, mult, shift);
|
||||
out_2 = vaddq_n_s32(out_2, out_offset);
|
||||
out_2 = vmaxq_s32(out_2, vdupq_n_s32(activation_min));
|
||||
out_2 = vminq_s32(out_2, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 2 * num_ch, out_2, p);
|
||||
|
||||
out_3 = arm_requantize_mve_32x4(out_3, mult, shift);
|
||||
out_3 = vaddq_n_s32(out_3, out_offset);
|
||||
out_3 = vmaxq_s32(out_3, vdupq_n_s32(activation_min));
|
||||
out_3 = vminq_s32(out_3, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 3 * num_ch, out_3, p);
|
||||
}
|
||||
|
||||
const int tail_ch = num_ch & 0x3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
out -= (4 - tail_ch);
|
||||
}
|
||||
return out + (3 * num_ch);
|
||||
|
||||
#else
|
||||
(void)lhs;
|
||||
(void)rhs;
|
||||
(void)input_offset;
|
||||
(void)num_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)row_x_col;
|
||||
(void)output_bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,170 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_depthwise_conv_nt_t_s8.c
|
||||
* Description: Depthwise convolution on matrices with no padding.
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M processors with MVE extension.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Depthwise convolution of rhs matrix with 4 lhs matrices with no padding. Dimensions are the same for lhs and rhs.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const int32_t input_offset,
|
||||
const uint16_t num_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int32_t out_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const uint16_t row_x_col,
|
||||
const int32_t *const output_bias,
|
||||
q7_t *out)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
const int32_t *bias = output_bias;
|
||||
int32_t loop_count = (num_ch + 3) / 4;
|
||||
uint32_t num_ch_to_process = num_ch;
|
||||
|
||||
for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count;
|
||||
num_ch_to_process -= 4, offset += 4, out += 4, i_loop_cnt++)
|
||||
{
|
||||
int32x4_t out_0 = vldrwq_s32(bias);
|
||||
int32x4_t out_1 = out_0;
|
||||
int32x4_t out_2 = out_0;
|
||||
int32x4_t out_3 = out_0;
|
||||
bias += 4;
|
||||
|
||||
const int8_t *rhs_0 = rhs + offset;
|
||||
const int8_t *lhs_0 = lhs + offset;
|
||||
const int8_t *lhs_1 = lhs + row_x_col * num_ch + offset;
|
||||
const int8_t *lhs_2 = lhs + (row_x_col * num_ch * 2) + offset;
|
||||
const int8_t *lhs_3 = lhs + (row_x_col * num_ch * 3) + offset;
|
||||
int32x4_t ker_sum = vdupq_n_s32(0);
|
||||
|
||||
for (int i_row_x_col = 0; i_row_x_col < row_x_col; i_row_x_col++)
|
||||
{
|
||||
const int32x4_t ker_0 = vldrbq_s32(rhs_0);
|
||||
ker_sum = vaddq_s32(ker_sum, ker_0);
|
||||
|
||||
int32x4_t ip_0 = vldrbq_s32(lhs_0);
|
||||
out_0 += vmulq_s32(ip_0, ker_0);
|
||||
|
||||
int32x4_t ip_1 = vldrbq_s32(lhs_1);
|
||||
out_1 += vmulq_s32(ip_1, ker_0);
|
||||
|
||||
int32x4_t ip_2 = vldrbq_s32(lhs_2);
|
||||
out_2 += vmulq_s32(ip_2, ker_0);
|
||||
|
||||
int32x4_t ip_3 = vldrbq_s32(lhs_3);
|
||||
out_3 += vmulq_s32(ip_3, ker_0);
|
||||
|
||||
lhs_0 += num_ch;
|
||||
lhs_1 += num_ch;
|
||||
lhs_2 += num_ch;
|
||||
lhs_3 += num_ch;
|
||||
|
||||
rhs_0 += num_ch;
|
||||
}
|
||||
|
||||
ker_sum = vmulq_n_s32(ker_sum, input_offset);
|
||||
out_0 = ker_sum + out_0;
|
||||
out_1 = ker_sum + out_1;
|
||||
out_2 = ker_sum + out_2;
|
||||
out_3 = ker_sum + out_3;
|
||||
|
||||
const int32x4_t mult = vldrwq_s32(out_mult);
|
||||
const int32x4_t shift = vldrwq_s32(out_shift);
|
||||
out_mult += 4;
|
||||
out_shift += 4;
|
||||
mve_pred16_t p = vctp32q(num_ch_to_process);
|
||||
|
||||
out_0 = arm_requantize_mve_32x4(out_0, mult, shift);
|
||||
out_0 = vaddq_n_s32(out_0, out_offset);
|
||||
out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min));
|
||||
out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out, out_0, p);
|
||||
|
||||
out_1 = arm_requantize_mve_32x4(out_1, mult, shift);
|
||||
out_1 = vaddq_n_s32(out_1, out_offset);
|
||||
out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min));
|
||||
out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + num_ch, out_1, p);
|
||||
|
||||
out_2 = arm_requantize_mve_32x4(out_2, mult, shift);
|
||||
out_2 = vaddq_n_s32(out_2, out_offset);
|
||||
out_2 = vmaxq_s32(out_2, vdupq_n_s32(activation_min));
|
||||
out_2 = vminq_s32(out_2, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 2 * num_ch, out_2, p);
|
||||
|
||||
out_3 = arm_requantize_mve_32x4(out_3, mult, shift);
|
||||
out_3 = vaddq_n_s32(out_3, out_offset);
|
||||
out_3 = vmaxq_s32(out_3, vdupq_n_s32(activation_min));
|
||||
out_3 = vminq_s32(out_3, vdupq_n_s32(activation_max));
|
||||
vstrbq_p_s32(out + 3 * num_ch, out_3, p);
|
||||
}
|
||||
|
||||
const int tail_ch = num_ch & 0x3;
|
||||
if (tail_ch != 0)
|
||||
{
|
||||
out -= (4 - tail_ch);
|
||||
}
|
||||
|
||||
return out + (3 * num_ch);
|
||||
#else
|
||||
(void)lhs;
|
||||
(void)rhs;
|
||||
(void)input_offset;
|
||||
(void)num_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)out_offset;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)row_x_col;
|
||||
(void)output_bias;
|
||||
(void)out;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,86 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mul_core_1x_s8.c
|
||||
* Description: General Matrix-multiplication function
|
||||
*
|
||||
* $Date: 19. April 2022
|
||||
* $Revision: V.1.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 matrix multiplication to process 1 row
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements,
|
||||
const int8_t *row_base,
|
||||
const int8_t *col_base,
|
||||
int32_t *const sum_col,
|
||||
int32_t *const output)
|
||||
{
|
||||
int32_t acc_n0 = 0;
|
||||
int32_t sum_tmp = 0;
|
||||
|
||||
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||||
|
||||
__ASM volatile(" vldrb.8 q0, [%[col]], #16 \n"
|
||||
" wlstp.8 lr, %[cnt], 1f \n"
|
||||
"2: \n"
|
||||
" vaddva.s8 %[sum], q0 \n"
|
||||
" vldrb.8 q1, [%[row0]], #16 \n"
|
||||
" vmladava.s8 %[out0], q0, q1 \n"
|
||||
" vldrb.8 q0, [%[col]], #16 \n"
|
||||
" letp lr, 2b \n"
|
||||
"1: \n"
|
||||
: [col] "+r"(col_base), [sum] "+Te"(sum_tmp), [row0] "+r"(row_base), [out0] "+Te"(acc_n0)
|
||||
: [cnt] "r"(row_elements)
|
||||
: "q0", "q1", "memory", "r14");
|
||||
#else
|
||||
for (int i = 0; i < row_elements; i++)
|
||||
{
|
||||
sum_tmp += col_base[i];
|
||||
acc_n0 += row_base[i] * col_base[i];
|
||||
}
|
||||
#endif
|
||||
|
||||
*sum_col = sum_tmp;
|
||||
*output = acc_n0;
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,137 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mul_core_4x_s8.c
|
||||
* Description: General matrix multiplication function for MVE extension
|
||||
*
|
||||
* $Date: 19. April 2022
|
||||
* $Revision: V.3.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M processors
|
||||
* -------------------------------------------------------------------- */
|
||||
#include "arm_nn_types.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 matrix multiplication to process 4 rows and one column
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
int8_t *arm_nn_mat_mul_core_4x_s8(const int32_t row_elements,
|
||||
const int32_t offset,
|
||||
const int8_t *row_base,
|
||||
const int8_t *col_base_ref,
|
||||
const int32_t out_ch,
|
||||
const cmsis_nn_conv_params *conv_params,
|
||||
const cmsis_nn_per_channel_quant_params *quant_params,
|
||||
const int32_t *bias,
|
||||
int8_t *output)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
for (int i = 0; i < out_ch; i++)
|
||||
{
|
||||
int32_t acc_n0 = 0;
|
||||
int32_t acc_n1 = 0;
|
||||
int32_t acc_n2 = 0;
|
||||
int32_t acc_n3 = 0;
|
||||
|
||||
const int8_t *ip_row_0 = row_base;
|
||||
const int8_t *ip_row_1 = row_base + offset;
|
||||
const int8_t *ip_row_2 = row_base + (2 * offset);
|
||||
const int8_t *ip_row_3 = row_base + (3 * offset);
|
||||
const int8_t *col_base = col_base_ref + i * row_elements;
|
||||
int32_t sum_tmp = 0;
|
||||
|
||||
__ASM volatile(" vldrb.8 q0, [%[col]], #16 \n"
|
||||
" wlstp.8 lr, %[cnt], 1f \n"
|
||||
"2: \n"
|
||||
" vaddva.s8 %[sum], q0 \n"
|
||||
" vldrb.8 q1, [%[row0]], #16 \n"
|
||||
" vmladava.s8 %[out0], q0, q1 \n"
|
||||
" vldrb.8 q2, [%[row1]], #16 \n"
|
||||
" vmladava.s8 %[out1], q0, q2 \n"
|
||||
" vldrb.8 q3, [%[row2]], #16 \n"
|
||||
" vmladava.s8 %[out2], q0, q3 \n"
|
||||
" vldrb.8 q4, [%[row3]], #16 \n"
|
||||
" vmladava.s8 %[out3], q0, q4 \n"
|
||||
" vldrb.8 q0, [%[col]], #16 \n"
|
||||
" letp lr, 2b \n"
|
||||
"1: \n"
|
||||
: [col] "+r"(col_base),
|
||||
[sum] "+Te"(sum_tmp),
|
||||
[row0] "+r"(ip_row_0),
|
||||
[row1] "+r"(ip_row_1),
|
||||
[row2] "+r"(ip_row_2),
|
||||
[row3] "+r"(ip_row_3),
|
||||
[out0] "+Te"(acc_n0),
|
||||
[out1] "+Te"(acc_n1),
|
||||
[out2] "+Te"(acc_n2),
|
||||
[out3] "+Te"(acc_n3)
|
||||
: [cnt] "r"(row_elements)
|
||||
: "q0", "q1", "q2", "q3", "q4", "memory", "r14");
|
||||
|
||||
int32x4_t res = {acc_n0, acc_n1, acc_n2, acc_n3};
|
||||
sum_tmp *= conv_params->input_offset;
|
||||
if (bias)
|
||||
{
|
||||
sum_tmp += bias[i];
|
||||
}
|
||||
res = vaddq_n_s32(res, sum_tmp);
|
||||
|
||||
res = arm_requantize_mve(res, quant_params->multiplier[i], quant_params->shift[i]);
|
||||
res = vaddq_n_s32(res, conv_params->output_offset);
|
||||
|
||||
res = vmaxq_s32(res, vdupq_n_s32(conv_params->activation.min));
|
||||
res = vminq_s32(res, vdupq_n_s32(conv_params->activation.max));
|
||||
|
||||
const uint32x4_t scatter_offset = {0, (uint32_t)out_ch, (uint32_t)out_ch * 2, (uint32_t)out_ch * 3};
|
||||
vstrbq_scatter_offset_s32(output, scatter_offset, res);
|
||||
output++;
|
||||
}
|
||||
|
||||
return output + (3 * out_ch);
|
||||
#else
|
||||
(void)row_elements;
|
||||
(void)offset;
|
||||
(void)row_base;
|
||||
(void)col_base_ref;
|
||||
(void)out_ch;
|
||||
(void)conv_params;
|
||||
(void)quant_params;
|
||||
(void)bias;
|
||||
(void)output;
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,250 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_kernel_s16.c
|
||||
* Description: Matrix-multiplication function for convolution
|
||||
*
|
||||
* $Date: 12 August 2021
|
||||
* $Revision: V.1.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/*
|
||||
* Matrix-multiplication function for convolution with per-channel requantization.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
q15_t *arm_nn_mat_mult_kernel_s16(const q7_t *input_a,
|
||||
const q15_t *input_b,
|
||||
const int32_t output_ch,
|
||||
const int32_t *out_shift,
|
||||
const int32_t *out_mult,
|
||||
const int16_t activation_min,
|
||||
const int16_t activation_max,
|
||||
const int32_t num_col_a,
|
||||
const int64_t *const output_bias,
|
||||
q15_t *out_0)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* set up the second output pointers */
|
||||
q15_t *out_1 = out_0 + output_ch;
|
||||
const int64_t *bias = output_bias;
|
||||
uint16_t row_count = output_ch / 2;
|
||||
const q7_t *ip_a0 = input_a;
|
||||
|
||||
/* this loop over rows in A */
|
||||
while (row_count)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
/* align the second pointer for A */
|
||||
const q7_t *ip_a1 = ip_a0 + num_col_a;
|
||||
|
||||
/* Init accumulator for channel N and N + 1 */
|
||||
q31_t ch_0_out_0 = 0;
|
||||
q31_t ch_0_out_1 = 0;
|
||||
q31_t ch_1_out_0 = 0;
|
||||
q31_t ch_1_out_1 = 0;
|
||||
|
||||
uint16_t col_count = num_col_a / 4;
|
||||
/* accumulate over the vector */
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02, a11, a12;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad(ip_a0, &a01, &a02);
|
||||
ip_a1 = read_and_pad(ip_a1, &a11, &a12);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0);
|
||||
ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1);
|
||||
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
col_count = num_col_a & 0x3;
|
||||
while (col_count)
|
||||
{
|
||||
q7_t a0 = *ip_a0++;
|
||||
q15_t b0 = *ip_b0++;
|
||||
q7_t a1 = *ip_a1++;
|
||||
q15_t b1 = *ip_b1++;
|
||||
|
||||
ch_0_out_0 += a0 * b0;
|
||||
ch_0_out_1 += a0 * b1;
|
||||
ch_1_out_0 += a1 * b0;
|
||||
ch_1_out_1 += a1 * b1;
|
||||
col_count--;
|
||||
} /* while over col_count */
|
||||
if (bias)
|
||||
{
|
||||
q31_t reduced_multiplier = REDUCE_MULTIPLIER(*out_mult);
|
||||
q63_t acc_64 = ch_0_out_0 + *bias;
|
||||
ch_0_out_0 = arm_nn_requantize_s64(acc_64, reduced_multiplier, *out_shift);
|
||||
acc_64 = ch_0_out_1 + *bias++;
|
||||
ch_0_out_1 = arm_nn_requantize_s64(acc_64, reduced_multiplier, *out_shift);
|
||||
out_mult++;
|
||||
}
|
||||
else
|
||||
{
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
out_mult++;
|
||||
}
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q15_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q15_t)ch_0_out_1;
|
||||
out_shift++;
|
||||
|
||||
if (bias)
|
||||
{
|
||||
q31_t reduced_multiplier = REDUCE_MULTIPLIER(*out_mult);
|
||||
q63_t acc_64 = ch_1_out_0 + *bias;
|
||||
ch_1_out_0 = arm_nn_requantize_s64(acc_64, reduced_multiplier, *out_shift);
|
||||
acc_64 = ch_1_out_1 + *bias++;
|
||||
ch_1_out_1 = arm_nn_requantize_s64(acc_64, reduced_multiplier, *out_shift);
|
||||
out_mult++;
|
||||
}
|
||||
else
|
||||
{
|
||||
ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift);
|
||||
ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift);
|
||||
out_mult++;
|
||||
}
|
||||
ch_1_out_0 = MAX(ch_1_out_0, activation_min);
|
||||
ch_1_out_0 = MIN(ch_1_out_0, activation_max);
|
||||
*out_0++ = (q15_t)ch_1_out_0;
|
||||
|
||||
ch_1_out_1 = MAX(ch_1_out_1, activation_min);
|
||||
ch_1_out_1 = MIN(ch_1_out_1, activation_max);
|
||||
*out_1++ = (q15_t)ch_1_out_1;
|
||||
out_shift++;
|
||||
|
||||
/* skip row */
|
||||
ip_a0 += num_col_a;
|
||||
row_count--;
|
||||
}
|
||||
|
||||
/* compute the last odd numbered row if any */
|
||||
if (output_ch & 0x1)
|
||||
{
|
||||
/* setup pointers for B */
|
||||
const q15_t *ip_b0 = input_b;
|
||||
const q15_t *ip_b1 = ip_b0 + num_col_a;
|
||||
|
||||
q31_t ch_0_out_0 = 0;
|
||||
q31_t ch_0_out_1 = 0;
|
||||
|
||||
uint16_t col_count = num_col_a >> 2;
|
||||
while (col_count)
|
||||
{
|
||||
q31_t a01, a02;
|
||||
q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
|
||||
ip_a0 = read_and_pad(ip_a0, &a01, &a02);
|
||||
|
||||
ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1);
|
||||
|
||||
b0 = arm_nn_read_q15x2_ia(&ip_b0);
|
||||
b1 = arm_nn_read_q15x2_ia(&ip_b1);
|
||||
ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0);
|
||||
ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1);
|
||||
|
||||
col_count--;
|
||||
}
|
||||
col_count = num_col_a & 0x3;
|
||||
while (col_count)
|
||||
{
|
||||
q7_t a0 = *ip_a0++;
|
||||
q15_t b0 = *ip_b0++;
|
||||
q15_t b1 = *ip_b1++;
|
||||
|
||||
ch_0_out_0 += a0 * b0;
|
||||
ch_0_out_1 += a0 * b1;
|
||||
col_count--;
|
||||
}
|
||||
if (bias)
|
||||
{
|
||||
q31_t reduced_multiplier = REDUCE_MULTIPLIER(*out_mult);
|
||||
q63_t acc_64 = ch_0_out_0 + *bias;
|
||||
ch_0_out_0 = arm_nn_requantize_s64(acc_64, reduced_multiplier, *out_shift);
|
||||
acc_64 = ch_0_out_1 + *bias++;
|
||||
ch_0_out_1 = arm_nn_requantize_s64(acc_64, reduced_multiplier, *out_shift);
|
||||
}
|
||||
else
|
||||
{
|
||||
ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift);
|
||||
ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift);
|
||||
}
|
||||
ch_0_out_0 = MAX(ch_0_out_0, activation_min);
|
||||
ch_0_out_0 = MIN(ch_0_out_0, activation_max);
|
||||
*out_0++ = (q15_t)ch_0_out_0;
|
||||
|
||||
ch_0_out_1 = MAX(ch_0_out_1, activation_min);
|
||||
ch_0_out_1 = MIN(ch_0_out_1, activation_max);
|
||||
*out_1++ = (q15_t)ch_0_out_1;
|
||||
out_mult++;
|
||||
out_shift++;
|
||||
}
|
||||
|
||||
out_0 += output_ch;
|
||||
|
||||
/* return the new output pointer with offset */
|
||||
return out_0;
|
||||
#else
|
||||
(void)input_a;
|
||||
(void)input_b;
|
||||
(void)output_ch;
|
||||
(void)out_shift;
|
||||
(void)out_mult;
|
||||
(void)activation_min;
|
||||
(void)activation_max;
|
||||
(void)num_col_a;
|
||||
(void)output_bias;
|
||||
(void)out_0;
|
||||
/* To be completed */
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
@@ -0,0 +1,582 @@
|
||||
/*
|
||||
* Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mat_mult_s8_nt_t_s8
|
||||
* Description: Matrix multiplication support function with the right-hand-side (rhs) matrix transposed
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 matrix multiplication with the right-hand-side matrix transposed
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q31_t *bias,
|
||||
q7_t *dst,
|
||||
const int32_t *dst_multipliers,
|
||||
const int32_t *dst_shifts,
|
||||
const int32_t lhs_rows,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP)
|
||||
const int32_t off0 = rhs_cols - 4;
|
||||
|
||||
for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
q31_t lhs_offset_contribution0 = 0;
|
||||
q31_t lhs_offset_contribution1 = 0;
|
||||
|
||||
for (int32_t x = 0; x < rhs_cols; ++x)
|
||||
{
|
||||
lhs_offset_contribution0 += rhs[x];
|
||||
lhs_offset_contribution1 += rhs[x + rhs_cols];
|
||||
}
|
||||
|
||||
lhs_offset_contribution0 *= lhs_offset;
|
||||
lhs_offset_contribution1 *= lhs_offset;
|
||||
if (bias)
|
||||
{
|
||||
lhs_offset_contribution0 += bias[rhs_rows_idx];
|
||||
lhs_offset_contribution1 += bias[rhs_rows_idx + 1];
|
||||
}
|
||||
|
||||
int32_t lhs_rows_idx = lhs_rows >> 1;
|
||||
|
||||
while (lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
q31_t res10 = lhs_offset_contribution0;
|
||||
q31_t res11 = lhs_offset_contribution1;
|
||||
|
||||
int32_t rhs_cols_idx = 0;
|
||||
|
||||
q31_t val0, val1, val2, val3, val4, val5;
|
||||
|
||||
for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16)
|
||||
{
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
|
||||
val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = __SXTB16(val1);
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val3, val2, res00);
|
||||
val5 = __SXTB16(val4);
|
||||
res00 = __SMLAD(val0, val1, res00);
|
||||
val4 = __SXTB16_RORn(val4, 8);
|
||||
res01 = __SMLAD(val3, val5, res01);
|
||||
res01 = __SMLAD(val0, val4, res01);
|
||||
|
||||
// 4 x MAC res10, res11
|
||||
val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]);
|
||||
val3 = __SXTB16(val0);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
res10 = __SMLAD(val3, val2, res10);
|
||||
res11 = __SMLAD(val3, val5, res11);
|
||||
res10 = __SMLAD(val0, val1, res10);
|
||||
res11 = __SMLAD(val0, val4, res11);
|
||||
}
|
||||
|
||||
for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
lhs_value = lhs_ptr[rhs_cols];
|
||||
res10 += lhs_value * rhs_value0;
|
||||
res11 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
res10 = arm_nn_requantize(res10, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res11 = arm_nn_requantize(res11, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
res10 += dst_offset;
|
||||
res11 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
res10 = MAX(res10, activation_min);
|
||||
res10 = MIN(res10, activation_max);
|
||||
res11 = MAX(res11, activation_min);
|
||||
res11 = MIN(res11, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
dst_ptr += rhs_rows;
|
||||
dst_ptr[0] = (q7_t)res10;
|
||||
dst_ptr[1] = (q7_t)res11;
|
||||
dst_ptr += rhs_rows;
|
||||
|
||||
lhs_ptr += rhs_cols;
|
||||
|
||||
lhs_rows_idx--;
|
||||
}
|
||||
|
||||
// Left-over rows
|
||||
if (lhs_rows % 2)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
|
||||
int32_t rhs_cols_idx = 0;
|
||||
|
||||
q31_t val0, val1, val2, val3, val4, val5;
|
||||
for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16)
|
||||
{
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
|
||||
val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr);
|
||||
val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]);
|
||||
val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr);
|
||||
val3 = __SXTB16(val0);
|
||||
val5 = __SXTB16(val2);
|
||||
val4 = __SXTB16(val1);
|
||||
val0 = __SXTB16_RORn(val0, 8);
|
||||
val2 = __SXTB16_RORn(val2, 8);
|
||||
val1 = __SXTB16_RORn(val1, 8);
|
||||
|
||||
// 4 x MAC res00, res01
|
||||
res00 = __SMLAD(val5, val3, res00);
|
||||
res00 = __SMLAD(val2, val0, res00);
|
||||
res01 = __SMLAD(val5, val4, res01);
|
||||
res01 = __SMLAD(val2, val1, res01);
|
||||
}
|
||||
|
||||
// Left-over accumulations
|
||||
for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
}
|
||||
|
||||
rhs += 2 * rhs_cols;
|
||||
dst += 2;
|
||||
}
|
||||
|
||||
if (rhs_rows % 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
for (int32_t lhs_rows_idx = 0; lhs_rows_idx < lhs_rows; ++lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
q31_t res00 = 0;
|
||||
if (bias)
|
||||
{
|
||||
res00 = bias[rhs_rows - 1];
|
||||
}
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value = rhs_ptr[0];
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows - 1], dst_shifts[rhs_rows - 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr += rhs_rows;
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
q31_t lhs_offset_contribution0 = 0;
|
||||
q31_t lhs_offset_contribution1 = 0;
|
||||
|
||||
for (int32_t x = 0; x < rhs_cols; ++x)
|
||||
{
|
||||
lhs_offset_contribution0 += rhs[x];
|
||||
lhs_offset_contribution1 += rhs[x + rhs_cols];
|
||||
}
|
||||
|
||||
lhs_offset_contribution0 *= lhs_offset;
|
||||
lhs_offset_contribution1 *= lhs_offset;
|
||||
if (bias)
|
||||
{
|
||||
lhs_offset_contribution0 += bias[rhs_rows_idx];
|
||||
lhs_offset_contribution1 += bias[rhs_rows_idx + 1];
|
||||
}
|
||||
|
||||
int32_t lhs_rows_idx = lhs_rows >> 1;
|
||||
|
||||
while (lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
q31_t res10 = lhs_offset_contribution0;
|
||||
q31_t res11 = lhs_offset_contribution1;
|
||||
|
||||
for (int32_t rhs_cols_idx = rhs_cols; rhs_cols_idx != 0; rhs_cols_idx--)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
lhs_value = lhs_ptr[rhs_cols];
|
||||
res10 += lhs_value * rhs_value0;
|
||||
res11 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
res10 = arm_nn_requantize(res10, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res11 = arm_nn_requantize(res11, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
res10 += dst_offset;
|
||||
res11 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
res10 = MAX(res10, activation_min);
|
||||
res10 = MIN(res10, activation_max);
|
||||
res11 = MAX(res11, activation_min);
|
||||
res11 = MIN(res11, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
dst_ptr += rhs_rows;
|
||||
dst_ptr[0] = (q7_t)res10;
|
||||
dst_ptr[1] = (q7_t)res11;
|
||||
dst_ptr += rhs_rows;
|
||||
|
||||
lhs_ptr += rhs_cols;
|
||||
|
||||
lhs_rows_idx--;
|
||||
}
|
||||
|
||||
// Left-over rows
|
||||
if (lhs_rows % 2)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = lhs_offset_contribution0;
|
||||
q31_t res01 = lhs_offset_contribution1;
|
||||
|
||||
for (int32_t rhs_cols_idx = rhs_cols; rhs_cols_idx != 0; rhs_cols_idx--)
|
||||
{
|
||||
q7_t rhs_value0 = rhs_ptr[0];
|
||||
q7_t rhs_value1 = rhs_ptr[rhs_cols];
|
||||
q7_t lhs_value = lhs_ptr[0];
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]);
|
||||
res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr[1] = (q7_t)res01;
|
||||
}
|
||||
|
||||
rhs += 2 * rhs_cols;
|
||||
dst += 2;
|
||||
}
|
||||
|
||||
if (rhs_rows % 2)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
q7_t *dst_ptr = &dst[0];
|
||||
|
||||
for (int32_t lhs_rows_idx = 0; lhs_rows_idx < lhs_rows; ++lhs_rows_idx)
|
||||
{
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
q31_t res00 = 0;
|
||||
if (bias)
|
||||
{
|
||||
res00 = bias[rhs_rows - 1];
|
||||
}
|
||||
|
||||
for (int32_t rhs_cols_idx = rhs_cols; rhs_cols_idx != 0; rhs_cols_idx--)
|
||||
{
|
||||
q31_t rhs_value = rhs_ptr[0];
|
||||
q31_t lhs_value = lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows - 1], dst_shifts[rhs_rows - 1]);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
dst_ptr[0] = (q7_t)res00;
|
||||
dst_ptr += rhs_rows;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
73
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
Normal file
73
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
Normal file
@@ -0,0 +1,73 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mult_q15.c
|
||||
* Description: Q15 vector multiplication with variable output shifts
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, const uint16_t out_shift, uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt = blockSize; /* loop counters */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the result in the destination buffer */
|
||||
*pDst++ = (q15_t)__SSAT(((q31_t)((q31_t)(*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 16);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
73
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
Normal file
73
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
Normal file
@@ -0,0 +1,73 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_mult_q7.c
|
||||
* Description: Q7 vector multiplication with variable output shifts
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 vector multiplication with variable output shifts
|
||||
* @param[in] *pSrcA pointer to the first input vector
|
||||
* @param[in] *pSrcB pointer to the second input vector
|
||||
* @param[out] *pDst pointer to the output vector
|
||||
* @param[in] out_shift amount of right-shift for output
|
||||
* @param[in] blockSize number of samples in each vector
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function uses saturating arithmetic.
|
||||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
|
||||
*/
|
||||
|
||||
void arm_nn_mult_q7(q7_t *pSrcA, q7_t *pSrcB, q7_t *pDst, const uint16_t out_shift, uint32_t blockSize)
|
||||
{
|
||||
uint32_t blkCnt = blockSize; /* loop counters */
|
||||
|
||||
while (blkCnt > 0U)
|
||||
{
|
||||
/* C = A * B */
|
||||
/* Multiply the inputs and store the result in the destination buffer */
|
||||
*pDst++ = (q7_t)__SSAT(((q15_t)((q15_t)(*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
|
||||
|
||||
/* Decrement the blockSize loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,211 @@
|
||||
/*
|
||||
* Copyright (C) 2020-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_vec_mat_mult_t_s16
|
||||
* Description: s16 vector by matrix (transposed) multiplication
|
||||
*
|
||||
* $Date: 04. January 2022
|
||||
* $Revision: V.1.2.0
|
||||
*
|
||||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s16 vector(lhs) by matrix (transposed) multiplication
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_vec_mat_mult_t_s16(const q15_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q63_t *bias,
|
||||
q15_t *dst,
|
||||
const int32_t dst_multiplier,
|
||||
const int32_t dst_shift,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
const int32_t row_loop_cnt = rhs_rows / 2;
|
||||
|
||||
int32_t rhs_cols_fast = rhs_cols;
|
||||
|
||||
if (rhs_cols > 512)
|
||||
{
|
||||
rhs_cols_fast = 512;
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < row_loop_cnt; i++)
|
||||
{
|
||||
q63_t acc_64_0 = 0;
|
||||
q63_t acc_64_1 = 0;
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
|
||||
const int32_t col_loop_cnt = rhs_cols_fast / 4;
|
||||
|
||||
const int16_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
const int8_t *rhs_1 = rhs + rhs_cols;
|
||||
rhs += 2 * rhs_cols;
|
||||
|
||||
for (int j = col_loop_cnt; j != 0; j--)
|
||||
{
|
||||
int32_t ker_0, ker_1, vec_part_0, vec_part_1;
|
||||
vec_part_0 = arm_nn_read_q15x2_ia(&lhs_vec);
|
||||
vec_part_1 = arm_nn_read_q15x2_ia(&lhs_vec);
|
||||
|
||||
rhs_0 = read_and_pad(rhs_0, &ker_0, &ker_1);
|
||||
|
||||
acc_0 = __SMLAD(ker_0, vec_part_0, acc_0);
|
||||
acc_0 = __SMLAD(ker_1, vec_part_1, acc_0);
|
||||
|
||||
rhs_1 = read_and_pad(rhs_1, &ker_0, &ker_1);
|
||||
|
||||
acc_1 = __SMLAD(ker_0, vec_part_0, acc_1);
|
||||
acc_1 = __SMLAD(ker_1, vec_part_1, acc_1);
|
||||
}
|
||||
|
||||
acc_64_0 += acc_0;
|
||||
acc_64_1 += acc_1;
|
||||
|
||||
for (int k = col_loop_cnt * 4; k < rhs_cols; k++)
|
||||
{
|
||||
const int32_t lhs_temp = (*lhs_vec);
|
||||
lhs_vec++;
|
||||
acc_64_0 += lhs_temp * (*rhs_0);
|
||||
rhs_0++;
|
||||
acc_64_1 += lhs_temp * (*rhs_1);
|
||||
rhs_1++;
|
||||
}
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_64_0 += *bias++;
|
||||
acc_64_1 += *bias++;
|
||||
}
|
||||
q31_t tmp;
|
||||
tmp = arm_nn_requantize_s64(acc_64_0, dst_multiplier, dst_shift);
|
||||
tmp = MAX(tmp, activation_min);
|
||||
tmp = MIN(tmp, activation_max);
|
||||
*dst++ = (q15_t)tmp;
|
||||
|
||||
tmp = arm_nn_requantize_s64(acc_64_1, dst_multiplier, dst_shift);
|
||||
tmp = MAX(tmp, activation_min);
|
||||
tmp = MIN(tmp, activation_max);
|
||||
*dst++ = (q15_t)tmp;
|
||||
}
|
||||
|
||||
if (rhs_rows & 0x1)
|
||||
{
|
||||
q63_t acc_64_0 = 0;
|
||||
int32_t acc_0 = 0;
|
||||
const int32_t col_loop_cnt = rhs_cols_fast / 4;
|
||||
|
||||
const int16_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
|
||||
for (int i = col_loop_cnt; i != 0; i--)
|
||||
{
|
||||
int32_t ker_0, ker_1, vec;
|
||||
rhs_0 = read_and_pad(rhs_0, &ker_0, &ker_1);
|
||||
|
||||
vec = arm_nn_read_q15x2_ia(&lhs_vec);
|
||||
acc_0 = __SMLAD(ker_0, vec, acc_0);
|
||||
|
||||
vec = arm_nn_read_q15x2_ia(&lhs_vec);
|
||||
acc_0 = __SMLAD(ker_1, vec, acc_0);
|
||||
}
|
||||
|
||||
acc_64_0 += acc_0;
|
||||
|
||||
for (int j = col_loop_cnt * 4; j < rhs_cols; j++)
|
||||
{
|
||||
const int32_t lhs_temp = (*lhs_vec);
|
||||
lhs_vec++;
|
||||
acc_64_0 += lhs_temp * (*rhs_0);
|
||||
rhs_0++;
|
||||
}
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_64_0 += *bias++;
|
||||
}
|
||||
q31_t tmp;
|
||||
tmp = arm_nn_requantize_s64(acc_64_0, dst_multiplier, dst_shift);
|
||||
tmp = MAX(tmp, activation_min);
|
||||
tmp = MIN(tmp, activation_max);
|
||||
*dst++ = (q15_t)tmp;
|
||||
}
|
||||
|
||||
#else
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < rhs_rows; i_row_loop_cnt++)
|
||||
{
|
||||
const q15_t *lhs_ptr = lhs;
|
||||
const q7_t *rhs_ptr_0 = &rhs[0];
|
||||
|
||||
q63_t result = 0;
|
||||
|
||||
if (bias)
|
||||
{
|
||||
result = *bias++;
|
||||
}
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
const q63_t rhs_value0 = (int8_t)*rhs_ptr_0;
|
||||
const q63_t lhs_value = *lhs_ptr;
|
||||
|
||||
result += lhs_value * rhs_value0;
|
||||
|
||||
++rhs_ptr_0;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
result = arm_nn_requantize_s64(result, dst_multiplier, dst_shift);
|
||||
|
||||
// Clamp the result
|
||||
result = ((result) > (activation_min) ? (result) : (activation_min));
|
||||
result = ((result) < (activation_max) ? (result) : (activation_max));
|
||||
|
||||
*dst++ = (q15_t)result;
|
||||
rhs += rhs_cols;
|
||||
}
|
||||
#endif
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,402 @@
|
||||
/*
|
||||
* Copyright (C) 2020-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_vec_mat_mult_t_s8
|
||||
* Description: s8 vector by matrix (transposed) multiplication
|
||||
*
|
||||
* $Date: 28 April 2022
|
||||
* $Revision: V.3.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 vector(lhs) by matrix (transposed) multiplication
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
const q31_t *bias,
|
||||
q7_t *dst,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t rhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t dst_multiplier,
|
||||
const int32_t dst_shift,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max,
|
||||
const int32_t address_offset)
|
||||
{
|
||||
(void)rhs_offset;
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
const int32_t row_loop_cnt = rhs_rows / 3;
|
||||
const uint32x4_t address_offset_array = {0, address_offset, address_offset * 2, address_offset * 3};
|
||||
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
int32_t acc_2 = 0;
|
||||
|
||||
const int32_t col_loop_cnt = (rhs_cols + 15) / 16;
|
||||
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
const int8_t *rhs_1 = rhs + rhs_cols;
|
||||
const int8_t *rhs_2 = rhs + 2 * rhs_cols;
|
||||
|
||||
int32_t rhs_sum_0 = 0;
|
||||
int32_t rhs_sum_1 = 0;
|
||||
int32_t rhs_sum_2 = 0;
|
||||
|
||||
uint32_t col_cnt = (uint32_t)rhs_cols;
|
||||
|
||||
for (int i = 0; i < col_loop_cnt; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q(col_cnt);
|
||||
col_cnt -= 16;
|
||||
|
||||
const int8x16_t input = vldrbq_z_s8(lhs_vec, p);
|
||||
|
||||
const int8x16_t ker_0 = vldrbq_z_s8(rhs_0, p);
|
||||
rhs_sum_0 = vaddvaq_p_s8(rhs_sum_0, ker_0, p);
|
||||
acc_0 = vmladavaq_p_s8(acc_0, ker_0, input, p);
|
||||
|
||||
const int8x16_t ker_1 = vldrbq_z_s8(rhs_1, p);
|
||||
rhs_sum_1 = vaddvaq_p_s8(rhs_sum_1, ker_1, p);
|
||||
acc_1 = vmladavaq_p_s8(acc_1, ker_1, input, p);
|
||||
|
||||
const int8x16_t ker_2 = vldrbq_z_s8(rhs_2, p);
|
||||
rhs_sum_2 = vaddvaq_p_s8(rhs_sum_2, ker_2, p);
|
||||
acc_2 = vmladavaq_p_s8(acc_2, ker_2, input, p);
|
||||
|
||||
lhs_vec += 16;
|
||||
rhs_0 += 16;
|
||||
rhs_1 += 16;
|
||||
rhs_2 += 16;
|
||||
}
|
||||
rhs += 3 * rhs_cols;
|
||||
|
||||
int32x4_t acc = {acc_0, acc_1, acc_2, 0};
|
||||
mve_pred16_t p = vctp32q(3);
|
||||
if (bias)
|
||||
{
|
||||
int32x4_t b = vldrwq_z_s32(bias, p);
|
||||
acc = vaddq_m_s32(vuninitializedq_s32(), acc, b, p);
|
||||
bias += 3;
|
||||
}
|
||||
const int32x4_t rhs_sum = {rhs_sum_0, rhs_sum_1, rhs_sum_2, 0};
|
||||
acc += vdupq_n_s32(lhs_offset) * rhs_sum;
|
||||
|
||||
acc = arm_requantize_mve(acc, dst_multiplier, dst_shift);
|
||||
acc = vaddq_s32(acc, vdupq_n_s32(dst_offset));
|
||||
acc = vmaxq_s32(acc, vdupq_n_s32(activation_min));
|
||||
acc = vminq_s32(acc, vdupq_n_s32(activation_max));
|
||||
|
||||
if (address_offset > 1L)
|
||||
{
|
||||
vstrbq_scatter_offset_s32(dst, address_offset_array, acc);
|
||||
}
|
||||
else
|
||||
{
|
||||
vstrbq_p_s32(dst, acc, p);
|
||||
}
|
||||
dst += 3 * address_offset;
|
||||
}
|
||||
|
||||
const int loop_cnt = rhs_rows % 3;
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
const int32_t col_loop_cnt = (rhs_cols + 15) / 16;
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
int32_t rhs_sum_0 = 0;
|
||||
uint32_t col_cnt = (uint32_t)rhs_cols;
|
||||
|
||||
for (int i = 0; i < col_loop_cnt; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q(col_cnt);
|
||||
col_cnt -= 16;
|
||||
const int8x16_t input = vldrbq_z_s8(lhs_vec, p);
|
||||
|
||||
const int8x16_t ker_0 = vldrbq_z_s8(rhs_0, p);
|
||||
rhs_sum_0 = vaddvaq_p_s8(rhs_sum_0, ker_0, p);
|
||||
acc_0 = vmladavaq_p_s8(acc_0, ker_0, input, p);
|
||||
|
||||
lhs_vec += 16;
|
||||
rhs_0 += 16;
|
||||
}
|
||||
rhs += rhs_cols;
|
||||
|
||||
if (bias)
|
||||
{
|
||||
acc_0 += *bias;
|
||||
bias++;
|
||||
}
|
||||
const int32_t offsets = rhs_sum_0 * lhs_offset;
|
||||
acc_0 += offsets;
|
||||
acc_0 = arm_nn_requantize(acc_0, dst_multiplier, dst_shift);
|
||||
acc_0 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
*dst = MIN(acc_0, activation_max);
|
||||
dst += address_offset;
|
||||
}
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
const int32_t row_loop_cnt = rhs_rows / 2;
|
||||
const int16_t lhs_offset_s16 = (int16_t)lhs_offset;
|
||||
const uint32_t lhs_offset_s16x2 = __PKHBT(lhs_offset_s16, lhs_offset_s16, 16);
|
||||
|
||||
for (int32_t i = 0; i < row_loop_cnt; i++)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
if (bias)
|
||||
{
|
||||
acc_0 = *bias++;
|
||||
acc_1 = *bias++;
|
||||
}
|
||||
|
||||
const int32_t col_loop_cnt = rhs_cols / 4;
|
||||
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
const int8_t *rhs_1 = rhs + rhs_cols;
|
||||
rhs += 2 * rhs_cols;
|
||||
|
||||
for (int j = col_loop_cnt; j != 0; j--)
|
||||
{
|
||||
int32_t vec_0 = arm_nn_read_q7x4_ia(&lhs_vec);
|
||||
int32_t vec_1 = __SXTAB16_RORn(lhs_offset_s16x2, (uint32_t)vec_0, 8);
|
||||
|
||||
vec_0 = __SXTAB16(lhs_offset_s16x2, vec_0);
|
||||
|
||||
int32_t ker_0 = arm_nn_read_q7x4_ia(&rhs_0);
|
||||
int32_t ker_1 = __SXTB16_RORn((uint32_t)ker_0, 8);
|
||||
ker_0 = __SXTB16(ker_0);
|
||||
|
||||
acc_0 = __SMLAD(ker_1, vec_1, acc_0);
|
||||
acc_0 = __SMLAD(ker_0, vec_0, acc_0);
|
||||
|
||||
ker_0 = arm_nn_read_q7x4_ia(&rhs_1);
|
||||
ker_1 = __SXTB16_RORn((uint32_t)ker_0, 8);
|
||||
ker_0 = __SXTB16(ker_0);
|
||||
|
||||
acc_1 = __SMLAD(ker_1, vec_1, acc_1);
|
||||
acc_1 = __SMLAD(ker_0, vec_0, acc_1);
|
||||
}
|
||||
|
||||
for (int k = col_loop_cnt * 4; k < rhs_cols; k++)
|
||||
{
|
||||
const int32_t lhs_temp = (*lhs_vec + lhs_offset);
|
||||
lhs_vec++;
|
||||
acc_0 += lhs_temp * (*rhs_0);
|
||||
rhs_0++;
|
||||
acc_1 += lhs_temp * (*rhs_1);
|
||||
rhs_1++;
|
||||
}
|
||||
|
||||
acc_0 = arm_nn_requantize(acc_0, dst_multiplier, dst_shift);
|
||||
acc_1 = arm_nn_requantize(acc_1, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
acc_0 += dst_offset;
|
||||
acc_1 += dst_offset;
|
||||
// Clamp the result
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
acc_0 = MIN(acc_0, activation_max);
|
||||
acc_1 = MAX(acc_1, activation_min);
|
||||
acc_1 = MIN(acc_1, activation_max);
|
||||
*dst = (int8_t)acc_0;
|
||||
*(dst + address_offset) = (int8_t)acc_1;
|
||||
dst += 2 * address_offset;
|
||||
}
|
||||
|
||||
if (rhs_rows & 0x1)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
if (bias)
|
||||
{
|
||||
acc_0 = *bias++;
|
||||
}
|
||||
const int32_t col_loop_cnt = rhs_cols / 4;
|
||||
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
|
||||
for (int i = col_loop_cnt; i != 0; i--)
|
||||
{
|
||||
int32_t vec_0 = arm_nn_read_q7x4_ia(&lhs_vec);
|
||||
int32_t vec_1 = __SXTAB16_RORn(lhs_offset_s16x2, (uint32_t)vec_0, 8);
|
||||
vec_0 = __SXTAB16(lhs_offset_s16x2, vec_0);
|
||||
|
||||
int32_t ker_0 = arm_nn_read_q7x4_ia(&rhs_0);
|
||||
int32_t ker_1 = __SXTB16_RORn((uint32_t)ker_0, 8);
|
||||
ker_0 = __SXTB16(ker_0);
|
||||
|
||||
acc_0 = __SMLAD(ker_1, vec_1, acc_0);
|
||||
acc_0 = __SMLAD(ker_0, vec_0, acc_0);
|
||||
}
|
||||
|
||||
for (int j = col_loop_cnt * 4; j < rhs_cols; j++)
|
||||
{
|
||||
const int32_t lhs_temp = (*lhs_vec + lhs_offset);
|
||||
lhs_vec++;
|
||||
acc_0 += lhs_temp * (*rhs_0);
|
||||
rhs_0++;
|
||||
}
|
||||
|
||||
acc_0 = arm_nn_requantize(acc_0, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
acc_0 += dst_offset;
|
||||
// Clamp the result
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
acc_0 = MIN(acc_0, activation_max);
|
||||
*dst = (int8_t)acc_0;
|
||||
dst += address_offset;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
const int32_t row_loop_cnt = rhs_rows / 3;
|
||||
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
const q7_t *lhs_ptr = lhs;
|
||||
const q7_t *rhs_ptr_0 = &rhs[0];
|
||||
const q7_t *rhs_ptr_1 = &rhs[rhs_cols];
|
||||
const q7_t *rhs_ptr_2 = &rhs[rhs_cols * 2];
|
||||
|
||||
q31_t res00 = 0;
|
||||
q31_t res01 = 0;
|
||||
q31_t res02 = 0;
|
||||
if (bias)
|
||||
{
|
||||
res00 = *bias++;
|
||||
res01 = *bias++;
|
||||
res02 = *bias++;
|
||||
}
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
const q31_t rhs_value0 = (int8_t)*rhs_ptr_0;
|
||||
const q31_t rhs_value1 = (int8_t)*rhs_ptr_1;
|
||||
const q31_t rhs_value2 = (int8_t)*rhs_ptr_2;
|
||||
const q31_t lhs_value = (int8_t)*lhs_ptr + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
res02 += lhs_value * rhs_value2;
|
||||
|
||||
++rhs_ptr_0;
|
||||
++rhs_ptr_1;
|
||||
++rhs_ptr_2;
|
||||
++lhs_ptr;
|
||||
}
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
res01 = arm_nn_requantize(res01, dst_multiplier, dst_shift);
|
||||
res02 = arm_nn_requantize(res02, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
res01 += dst_offset;
|
||||
res02 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
res02 = MAX(res02, activation_min);
|
||||
res02 = MIN(res02, activation_max);
|
||||
|
||||
*dst = (q7_t)res00;
|
||||
*(dst + address_offset) = (q7_t)res01;
|
||||
*(dst + 2 * address_offset) = (q7_t)res02;
|
||||
dst += 3 * address_offset;
|
||||
|
||||
rhs += 3 * rhs_cols;
|
||||
}
|
||||
|
||||
const int loop_cnt = rhs_rows % 3;
|
||||
|
||||
for (int i_loop_cnt = 0; i_loop_cnt < loop_cnt; i_loop_cnt++)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = 0;
|
||||
if (bias)
|
||||
{
|
||||
res00 = *bias++;
|
||||
}
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value0 = (int8_t)rhs_ptr[0];
|
||||
q31_t lhs_value = (int8_t)lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
|
||||
// Add offset
|
||||
res00 += dst_offset;
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
*dst = (int8_t)res00;
|
||||
dst += address_offset;
|
||||
rhs += rhs_cols;
|
||||
}
|
||||
#endif
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
@@ -0,0 +1,341 @@
|
||||
/*
|
||||
* Copyright (C) 2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_vec_mat_mult_t_svdf_s8
|
||||
* Description: s8 vector by matrix (transposed) multiplication with
|
||||
* s16 output. Targetted at SVDF operator.
|
||||
*
|
||||
* $Date: 15. April 2021
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup NNBasicMath
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 vector(lhs) by matrix (transposed) multiplication
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_nn_vec_mat_mult_t_svdf_s8(const q7_t *lhs,
|
||||
const q7_t *rhs,
|
||||
q15_t *dst,
|
||||
const int32_t lhs_offset,
|
||||
const int32_t rhs_offset,
|
||||
const int32_t dst_offset,
|
||||
const int32_t dst_multiplier,
|
||||
const int32_t dst_shift,
|
||||
const int32_t rhs_cols,
|
||||
const int32_t rhs_rows,
|
||||
const int32_t activation_min,
|
||||
const int32_t activation_max)
|
||||
{
|
||||
(void)rhs_offset;
|
||||
if (rhs_cols < 0 || (NN_Q31_MAX - rhs_cols) < 16 || dst_offset < 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
(void)rhs_offset;
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t row_loop_cnt = rhs_rows / 3;
|
||||
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
int32_t acc_2 = 0;
|
||||
|
||||
const int32_t col_loop_cnt = (rhs_cols + 15) / 16;
|
||||
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
const int8_t *rhs_1 = rhs + rhs_cols;
|
||||
const int8_t *rhs_2 = rhs + 2 * rhs_cols;
|
||||
|
||||
int32_t rhs_sum_0 = 0;
|
||||
int32_t rhs_sum_1 = 0;
|
||||
int32_t rhs_sum_2 = 0;
|
||||
|
||||
uint32_t col_cnt = (uint32_t)rhs_cols;
|
||||
|
||||
for (int i = 0; i < col_loop_cnt; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q(col_cnt);
|
||||
col_cnt -= 16;
|
||||
|
||||
const int8x16_t input = vldrbq_z_s8(lhs_vec, p);
|
||||
|
||||
const int8x16_t ker_0 = vldrbq_z_s8(rhs_0, p);
|
||||
rhs_sum_0 = vaddvaq_p_s8(rhs_sum_0, ker_0, p);
|
||||
acc_0 = vmladavaq_p_s8(acc_0, ker_0, input, p);
|
||||
|
||||
const int8x16_t ker_1 = vldrbq_z_s8(rhs_1, p);
|
||||
rhs_sum_1 = vaddvaq_p_s8(rhs_sum_1, ker_1, p);
|
||||
acc_1 = vmladavaq_p_s8(acc_1, ker_1, input, p);
|
||||
|
||||
const int8x16_t ker_2 = vldrbq_z_s8(rhs_2, p);
|
||||
rhs_sum_2 = vaddvaq_p_s8(rhs_sum_2, ker_2, p);
|
||||
acc_2 = vmladavaq_p_s8(acc_2, ker_2, input, p);
|
||||
|
||||
lhs_vec += 16;
|
||||
rhs_0 += 16;
|
||||
rhs_1 += 16;
|
||||
rhs_2 += 16;
|
||||
}
|
||||
rhs += 3 * rhs_cols;
|
||||
|
||||
int32x4_t acc = {acc_0, acc_1, acc_2, 0};
|
||||
const int32x4_t rhs_sum = {rhs_sum_0, rhs_sum_1, rhs_sum_2, 0};
|
||||
acc += vdupq_n_s32(lhs_offset) * rhs_sum;
|
||||
|
||||
acc = arm_requantize_mve(acc, dst_multiplier, dst_shift);
|
||||
acc = vmaxq_s32(acc, vdupq_n_s32(activation_min));
|
||||
acc = vminq_s32(acc, vdupq_n_s32(activation_max));
|
||||
*(dst) = (int16_t)acc[0];
|
||||
*(dst + dst_offset) = (int16_t)acc[1];
|
||||
*(dst + 2 * dst_offset) = (int16_t)acc[2];
|
||||
dst += 3 * dst_offset;
|
||||
}
|
||||
|
||||
const int loop_cnt = rhs_rows % 3;
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
const int32_t col_loop_cnt = (rhs_cols + 15) / 16;
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
int32_t rhs_sum_0 = 0;
|
||||
uint32_t col_cnt = (uint32_t)rhs_cols;
|
||||
|
||||
for (int i = 0; i < col_loop_cnt; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q(col_cnt);
|
||||
col_cnt -= 16;
|
||||
const int8x16_t input = vldrbq_z_s8(lhs_vec, p);
|
||||
|
||||
const int8x16_t ker_0 = vldrbq_z_s8(rhs_0, p);
|
||||
rhs_sum_0 = vaddvaq_p_s8(rhs_sum_0, ker_0, p);
|
||||
acc_0 = vmladavaq_p_s8(acc_0, ker_0, input, p);
|
||||
|
||||
lhs_vec += 16;
|
||||
rhs_0 += 16;
|
||||
}
|
||||
rhs += rhs_cols;
|
||||
|
||||
const int32_t offsets = rhs_sum_0 * lhs_offset;
|
||||
acc_0 = __QADD(acc_0, offsets);
|
||||
acc_0 = arm_nn_requantize(acc_0, dst_multiplier, dst_shift);
|
||||
|
||||
// Clamp the result
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
*dst = (q15_t)MIN(acc_0, activation_max);
|
||||
dst += dst_offset;
|
||||
}
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
int32_t row_loop_cnt = rhs_rows / 2;
|
||||
|
||||
const int16_t lhs_offset_s16 = lhs_offset;
|
||||
const int16_t rhs_offset_s16 = rhs_offset;
|
||||
|
||||
const uint32_t lhs_offset_s16x2 = __PKHBT(lhs_offset_s16, lhs_offset_s16, 16);
|
||||
const uint32_t rhs_offset_s16x2 = __PKHBT(rhs_offset_s16, rhs_offset_s16, 16);
|
||||
for (int32_t i = 0; i < row_loop_cnt; i++)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
int32_t acc_1 = 0;
|
||||
|
||||
const int32_t col_loop_cnt = rhs_cols / 4;
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
const int8_t *rhs_1 = rhs + rhs_cols;
|
||||
rhs += 2 * rhs_cols;
|
||||
for (int j = col_loop_cnt; j != 0; j--)
|
||||
{
|
||||
int32_t vec_0 = arm_nn_read_q7x4_ia(&lhs_vec);
|
||||
int32_t vec_1 = __SXTAB16_RORn(lhs_offset_s16x2, (uint32_t)vec_0, 8);
|
||||
vec_0 = __SXTAB16(lhs_offset_s16x2, vec_0);
|
||||
int32_t ker_0 = arm_nn_read_q7x4_ia(&rhs_0);
|
||||
int32_t ker_1 = __SXTAB16_RORn(rhs_offset_s16x2, (uint32_t)ker_0, 8);
|
||||
ker_0 = __SXTAB16(rhs_offset_s16x2, ker_0);
|
||||
acc_0 = __SMLAD(ker_1, vec_1, acc_0);
|
||||
acc_0 = __SMLAD(ker_0, vec_0, acc_0);
|
||||
ker_0 = arm_nn_read_q7x4_ia(&rhs_1);
|
||||
ker_1 = __SXTAB16_RORn(rhs_offset_s16x2, (uint32_t)ker_0, 8);
|
||||
ker_0 = __SXTAB16(rhs_offset_s16x2, ker_0);
|
||||
acc_1 = __SMLAD(ker_1, vec_1, acc_1);
|
||||
acc_1 = __SMLAD(ker_0, vec_0, acc_1);
|
||||
}
|
||||
for (int k = col_loop_cnt * 4; k < rhs_cols; k++)
|
||||
{
|
||||
const int32_t lhs_temp = (*lhs_vec + lhs_offset);
|
||||
lhs_vec++;
|
||||
acc_0 += lhs_temp * (*rhs_0 + rhs_offset);
|
||||
rhs_0++;
|
||||
acc_1 += lhs_temp * (*rhs_1 + rhs_offset);
|
||||
rhs_1++;
|
||||
}
|
||||
acc_0 = arm_nn_requantize(acc_0, dst_multiplier, dst_shift);
|
||||
acc_1 = arm_nn_requantize(acc_1, dst_multiplier, dst_shift);
|
||||
|
||||
// Clamp the result
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
acc_0 = MIN(acc_0, activation_max);
|
||||
acc_1 = MAX(acc_1, activation_min);
|
||||
acc_1 = MIN(acc_1, activation_max);
|
||||
*dst = (q15_t)acc_0;
|
||||
*(dst + dst_offset) = (q15_t)acc_1;
|
||||
dst += 2 * dst_offset;
|
||||
}
|
||||
if (rhs_rows & 0x1)
|
||||
{
|
||||
int32_t acc_0 = 0;
|
||||
const int32_t col_loop_cnt = rhs_cols / 4;
|
||||
const int8_t *lhs_vec = lhs;
|
||||
const int8_t *rhs_0 = rhs;
|
||||
for (int i = col_loop_cnt; i != 0; i--)
|
||||
{
|
||||
int32_t vec_0 = arm_nn_read_q7x4_ia(&lhs_vec);
|
||||
int32_t vec_1 = __SXTAB16(lhs_offset_s16x2, __ROR((uint32_t)vec_0, 8));
|
||||
vec_0 = __SXTAB16(lhs_offset_s16x2, vec_0);
|
||||
int32_t ker_0 = arm_nn_read_q7x4_ia(&rhs_0);
|
||||
int32_t ker_1 = __SXTAB16(rhs_offset_s16x2, __ROR((uint32_t)ker_0, 8));
|
||||
ker_0 = __SXTAB16(rhs_offset_s16x2, ker_0);
|
||||
acc_0 = __SMLAD(ker_1, vec_1, acc_0);
|
||||
acc_0 = __SMLAD(ker_0, vec_0, acc_0);
|
||||
}
|
||||
for (int j = col_loop_cnt * 4; j < rhs_cols; j++)
|
||||
{
|
||||
const int32_t lhs_temp = (*lhs_vec + lhs_offset);
|
||||
lhs_vec++;
|
||||
acc_0 += lhs_temp * (*rhs_0 + rhs_offset);
|
||||
rhs_0++;
|
||||
}
|
||||
acc_0 = arm_nn_requantize(acc_0, dst_multiplier, dst_shift);
|
||||
|
||||
// Clamp the result
|
||||
acc_0 = MAX(acc_0, activation_min);
|
||||
acc_0 = MIN(acc_0, activation_max);
|
||||
*dst = (q15_t)acc_0;
|
||||
dst += dst_offset;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
int32_t row_loop_cnt = rhs_rows / 3;
|
||||
|
||||
for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; i_row_loop_cnt++)
|
||||
{
|
||||
const q7_t *lhs_ptr = lhs;
|
||||
const q7_t *rhs_ptr_0 = &rhs[0];
|
||||
const q7_t *rhs_ptr_1 = &rhs[rhs_cols];
|
||||
const q7_t *rhs_ptr_2 = &rhs[rhs_cols * 2];
|
||||
|
||||
q31_t res00 = 0;
|
||||
q31_t res01 = 0;
|
||||
q31_t res02 = 0;
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
const q31_t rhs_value0 = (int8_t)*rhs_ptr_0;
|
||||
const q31_t rhs_value1 = (int8_t)*rhs_ptr_1;
|
||||
const q31_t rhs_value2 = (int8_t)*rhs_ptr_2;
|
||||
const q31_t lhs_value = (int8_t)*lhs_ptr + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
res01 += lhs_value * rhs_value1;
|
||||
res02 += lhs_value * rhs_value2;
|
||||
|
||||
++rhs_ptr_0;
|
||||
++rhs_ptr_1;
|
||||
++rhs_ptr_2;
|
||||
++lhs_ptr;
|
||||
}
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
res01 = arm_nn_requantize(res01, dst_multiplier, dst_shift);
|
||||
res02 = arm_nn_requantize(res02, dst_multiplier, dst_shift);
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
res01 = MAX(res01, activation_min);
|
||||
res01 = MIN(res01, activation_max);
|
||||
res02 = MAX(res02, activation_min);
|
||||
res02 = MIN(res02, activation_max);
|
||||
|
||||
*dst = (q15_t)res00;
|
||||
*(dst + dst_offset) = (q15_t)res01;
|
||||
*(dst + 2 * dst_offset) = (q15_t)res02;
|
||||
dst += 3 * dst_offset;
|
||||
rhs += 3 * rhs_cols;
|
||||
}
|
||||
|
||||
const int loop_cnt = rhs_rows % 3;
|
||||
|
||||
for (int i_loop_cnt = 0; i_loop_cnt < loop_cnt; i_loop_cnt++)
|
||||
{
|
||||
const q7_t *lhs_ptr = &lhs[0];
|
||||
const q7_t *rhs_ptr = &rhs[0];
|
||||
|
||||
q31_t res00 = 0;
|
||||
|
||||
for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx)
|
||||
{
|
||||
q31_t rhs_value0 = (int8_t)rhs_ptr[0] + rhs_offset;
|
||||
q31_t lhs_value = (int8_t)lhs_ptr[0] + lhs_offset;
|
||||
|
||||
res00 += lhs_value * rhs_value0;
|
||||
|
||||
++rhs_ptr;
|
||||
++lhs_ptr;
|
||||
}
|
||||
|
||||
// Quantize down
|
||||
res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift);
|
||||
|
||||
// Clamp the result
|
||||
res00 = MAX(res00, activation_min);
|
||||
res00 = MIN(res00, activation_max);
|
||||
|
||||
*dst = (q15_t)res00;
|
||||
dst += dst_offset;
|
||||
rhs += rhs_cols;
|
||||
}
|
||||
#endif
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
203
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
Normal file
203
Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
Normal file
@@ -0,0 +1,203 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nntables.c
|
||||
* Description: Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
*
|
||||
* $Date: 17. January 2018
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @brief tables for various activation functions
|
||||
*
|
||||
* This file include the declaration of common tables.
|
||||
* Most of them are used for activation functions
|
||||
*
|
||||
* Assumption:
|
||||
* Unified table: input is 3.x format, i.e, range of [-8, 8)
|
||||
* sigmoid(8) = 0.9996646498695336
|
||||
* tanh(8) = 0.9999997749296758
|
||||
* The accuracy here should be good enough
|
||||
*
|
||||
* 2-stage HL table:
|
||||
*
|
||||
* The entire input range is divided into two parts:
|
||||
*
|
||||
* Low range table: 0x000x xxxx or 0x111x xxxx
|
||||
* table entry will be the binary number excluding the first
|
||||
* two digits, i.e., 0x0x xxxx or 0x1x xxxx
|
||||
*
|
||||
*
|
||||
*
|
||||
* High range table 0x0010 0000 -- 0x0111 1111
|
||||
* 0x1000 0000 -- 0x1101 1111
|
||||
*
|
||||
* For positive numbers, table entry will be
|
||||
* 0x0010 0000 -- 0x0111 1111 minus 0x0010 0000
|
||||
* i.e., 0x0000 0000 - 0x0101 11111
|
||||
*
|
||||
* same thing for the negative numbers, table entry will be
|
||||
* 0x1000 0000 -- 0x1101 1111 minux 0x0010 0000
|
||||
* i.e., 0x0110 0000 - 0x1011 1111
|
||||
*/
|
||||
|
||||
const q7_t sigmoidTable_q7[256] = {
|
||||
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x53, 0x55, 0x57, 0x59, 0x5a, 0x5c, 0x5e, 0x5f, 0x61,
|
||||
0x62, 0x63, 0x65, 0x66, 0x67, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x72, 0x73, 0x74, 0x74,
|
||||
0x75, 0x76, 0x76, 0x77, 0x77, 0x78, 0x78, 0x79, 0x79, 0x7a, 0x7a, 0x7a, 0x7b, 0x7b, 0x7b, 0x7c, 0x7c, 0x7c, 0x7c,
|
||||
0x7c, 0x7d, 0x7d, 0x7d, 0x7d, 0x7d, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01,
|
||||
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02,
|
||||
0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06,
|
||||
0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b, 0x0c, 0x0c, 0x0d, 0x0e, 0x0e, 0x0f, 0x10, 0x11, 0x12,
|
||||
0x13, 0x14, 0x15, 0x16, 0x17, 0x19, 0x1a, 0x1b, 0x1d, 0x1e, 0x1f, 0x21, 0x22, 0x24, 0x26, 0x27, 0x29, 0x2b, 0x2d,
|
||||
0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
|
||||
};
|
||||
|
||||
const q15_t sigmoidTable_q15[256] = {
|
||||
0x4000, 0x4200, 0x43ff, 0x45fc, 0x47f5, 0x49eb, 0x4bdc, 0x4dc8, 0x4fad, 0x518a, 0x5360, 0x552c, 0x56ef, 0x58a8,
|
||||
0x5a57, 0x5bfb, 0x5d93, 0x5f20, 0x60a1, 0x6216, 0x637f, 0x64db, 0x662b, 0x676f, 0x68a6, 0x69d2, 0x6af1, 0x6c05,
|
||||
0x6d0d, 0x6e09, 0x6efb, 0x6fe2, 0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7, 0x764a, 0x76d6,
|
||||
0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f, 0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
|
||||
0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d, 0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f,
|
||||
0x7e69, 0x7e81, 0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17, 0x7f25, 0x7f32, 0x7f3e, 0x7f4a,
|
||||
0x7f55, 0x7f5f, 0x7f69, 0x7f72, 0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa, 0x7faf, 0x7fb4,
|
||||
0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc, 0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
|
||||
0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed, 0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3,
|
||||
0x7ff4, 0x7ff4, 0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, 0x0012, 0x0013, 0x0015, 0x0016,
|
||||
0x0017, 0x0019, 0x001a, 0x001c, 0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e, 0x0031, 0x0034,
|
||||
0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c, 0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
|
||||
0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce, 0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b,
|
||||
0x013e, 0x0152, 0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a, 0x024d, 0x0273, 0x029a, 0x02c4,
|
||||
0x02f1, 0x0320, 0x0353, 0x0388, 0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8, 0x0612, 0x0671,
|
||||
0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a, 0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
|
||||
0x0f42, 0x101e, 0x1105, 0x11f7, 0x12f3, 0x13fb, 0x150f, 0x162e, 0x175a, 0x1891, 0x19d5, 0x1b25, 0x1c81, 0x1dea,
|
||||
0x1f5f, 0x20e0, 0x226d, 0x2405, 0x25a9, 0x2758, 0x2911, 0x2ad4, 0x2ca0, 0x2e76, 0x3053, 0x3238, 0x3424, 0x3615,
|
||||
0x380b, 0x3a04, 0x3c01, 0x3e00,
|
||||
};
|
||||
|
||||
const q15_t sigmoidLTable_q15[128] = {
|
||||
0x4000, 0x4100, 0x4200, 0x42ff, 0x43ff, 0x44fd, 0x45fc, 0x46f9, 0x47f5, 0x48f1, 0x49eb, 0x4ae5, 0x4bdc,
|
||||
0x4cd3, 0x4dc8, 0x4ebb, 0x4fad, 0x509c, 0x518a, 0x5276, 0x5360, 0x5447, 0x552c, 0x560f, 0x56ef, 0x57cd,
|
||||
0x58a8, 0x5981, 0x5a57, 0x5b2a, 0x5bfb, 0x5cc9, 0x5d93, 0x5e5b, 0x5f20, 0x5fe2, 0x60a1, 0x615d, 0x6216,
|
||||
0x62cc, 0x637f, 0x642e, 0x64db, 0x6584, 0x662b, 0x66ce, 0x676f, 0x680c, 0x68a6, 0x693d, 0x69d2, 0x6a63,
|
||||
0x6af1, 0x6b7c, 0x6c05, 0x6c8a, 0x6d0d, 0x6d8d, 0x6e09, 0x6e84, 0x6efb, 0x6f70, 0x6fe2, 0x7051, 0x0f42,
|
||||
0x0faf, 0x101e, 0x1090, 0x1105, 0x117c, 0x11f7, 0x1273, 0x12f3, 0x1376, 0x13fb, 0x1484, 0x150f, 0x159d,
|
||||
0x162e, 0x16c3, 0x175a, 0x17f4, 0x1891, 0x1932, 0x19d5, 0x1a7c, 0x1b25, 0x1bd2, 0x1c81, 0x1d34, 0x1dea,
|
||||
0x1ea3, 0x1f5f, 0x201e, 0x20e0, 0x21a5, 0x226d, 0x2337, 0x2405, 0x24d6, 0x25a9, 0x267f, 0x2758, 0x2833,
|
||||
0x2911, 0x29f1, 0x2ad4, 0x2bb9, 0x2ca0, 0x2d8a, 0x2e76, 0x2f64, 0x3053, 0x3145, 0x3238, 0x332d, 0x3424,
|
||||
0x351b, 0x3615, 0x370f, 0x380b, 0x3907, 0x3a04, 0x3b03, 0x3c01, 0x3d01, 0x3e00, 0x3f00,
|
||||
};
|
||||
|
||||
const q15_t sigmoidHTable_q15[192] = {
|
||||
0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7, 0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0,
|
||||
0x792a, 0x798f, 0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03, 0x7c3f, 0x7c78, 0x7cad, 0x7ce0,
|
||||
0x7d0f, 0x7d3c, 0x7d66, 0x7d8d, 0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81, 0x7e98, 0x7eae,
|
||||
0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17, 0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
|
||||
0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa, 0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5,
|
||||
0x7fc8, 0x7fcc, 0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0, 0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7,
|
||||
0x7fe9, 0x7fea, 0x7feb, 0x7fed, 0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4, 0x000b, 0x000c,
|
||||
0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, 0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
|
||||
0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e, 0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043,
|
||||
0x0048, 0x004c, 0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d, 0x0085, 0x008e, 0x0097, 0x00a1,
|
||||
0x00ab, 0x00b6, 0x00c2, 0x00ce, 0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152, 0x0168, 0x017f,
|
||||
0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a, 0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
|
||||
0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8, 0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828,
|
||||
0x08a5, 0x092a, 0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
|
||||
};
|
||||
|
||||
const q7_t tanhTable_q7[256] = {
|
||||
0x00, 0x08, 0x10, 0x18, 0x1f, 0x27, 0x2e, 0x35, 0x3b, 0x41, 0x47, 0x4c, 0x51, 0x56, 0x5a, 0x5e, 0x61, 0x65, 0x68,
|
||||
0x6a, 0x6d, 0x6f, 0x71, 0x72, 0x74, 0x75, 0x76, 0x78, 0x78, 0x79, 0x7a, 0x7b, 0x7b, 0x7c, 0x7c, 0x7d, 0x7d, 0x7e,
|
||||
0x7e, 0x7e, 0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
|
||||
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
|
||||
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81, 0x81,
|
||||
0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x82, 0x82, 0x82, 0x82, 0x82, 0x83, 0x83, 0x84, 0x84, 0x85, 0x85, 0x86, 0x87,
|
||||
0x88, 0x88, 0x8a, 0x8b, 0x8c, 0x8e, 0x8f, 0x91, 0x93, 0x96, 0x98, 0x9b, 0x9f, 0xa2, 0xa6, 0xaa, 0xaf, 0xb4, 0xb9,
|
||||
0xbf, 0xc5, 0xcb, 0xd2, 0xd9, 0xe1, 0xe8, 0xf0, 0xf8,
|
||||
};
|
||||
|
||||
const q15_t tanhTable_q15[256] = {
|
||||
0x0000, 0x07fd, 0x0feb, 0x17b9, 0x1f59, 0x26bf, 0x2ddf, 0x34ae, 0x3b27, 0x4142, 0x46fd, 0x4c56, 0x514d, 0x55e2,
|
||||
0x5a1a, 0x5df6, 0x617c, 0x64b0, 0x6797, 0x6a37, 0x6c95, 0x6eb5, 0x709e, 0x7254, 0x73dc, 0x753a, 0x7672, 0x7788,
|
||||
0x787f, 0x795b, 0x7a1e, 0x7acb, 0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f, 0x7e49, 0x7e7d,
|
||||
0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48, 0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
|
||||
0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7, 0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4,
|
||||
0x7ff6, 0x7ff7, 0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd, 0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe,
|
||||
0x7ffe, 0x7ffe, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
|
||||
0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003, 0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006,
|
||||
0x8006, 0x8007, 0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013, 0x8016, 0x8019, 0x801c, 0x8020,
|
||||
0x8024, 0x8029, 0x802f, 0x8035, 0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f, 0x80a2, 0x80b8,
|
||||
0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183, 0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
|
||||
0x849b, 0x8535, 0x85e2, 0x86a5, 0x8781, 0x8878, 0x898e, 0x8ac6, 0x8c24, 0x8dac, 0x8f62, 0x914b, 0x936b, 0x95c9,
|
||||
0x9869, 0x9b50, 0x9e84, 0xa20a, 0xa5e6, 0xaa1e, 0xaeb3, 0xb3aa, 0xb903, 0xbebe, 0xc4d9, 0xcb52, 0xd221, 0xd941,
|
||||
0xe0a7, 0xe847, 0xf015, 0xf803,
|
||||
};
|
||||
|
||||
const q15_t tanhLTable_q15[128] = {
|
||||
0x0000, 0x0400, 0x07fd, 0x0bf7, 0x0feb, 0x13d7, 0x17b9, 0x1b90, 0x1f59, 0x2314, 0x26bf, 0x2a58, 0x2ddf,
|
||||
0x3151, 0x34ae, 0x37f6, 0x3b27, 0x3e40, 0x4142, 0x442c, 0x46fd, 0x49b6, 0x4c56, 0x4edd, 0x514d, 0x53a3,
|
||||
0x55e2, 0x580a, 0x5a1a, 0x5c13, 0x5df6, 0x5fc4, 0x617c, 0x6320, 0x64b0, 0x662d, 0x6797, 0x68f0, 0x6a37,
|
||||
0x6b6e, 0x6c95, 0x6dac, 0x6eb5, 0x6fb0, 0x709e, 0x717f, 0x7254, 0x731e, 0x73dc, 0x7490, 0x753a, 0x75da,
|
||||
0x7672, 0x7701, 0x7788, 0x7807, 0x787f, 0x78f0, 0x795b, 0x79bf, 0x7a1e, 0x7a77, 0x7acb, 0x7b1b, 0x849b,
|
||||
0x84e5, 0x8535, 0x8589, 0x85e2, 0x8641, 0x86a5, 0x8710, 0x8781, 0x87f9, 0x8878, 0x88ff, 0x898e, 0x8a26,
|
||||
0x8ac6, 0x8b70, 0x8c24, 0x8ce2, 0x8dac, 0x8e81, 0x8f62, 0x9050, 0x914b, 0x9254, 0x936b, 0x9492, 0x95c9,
|
||||
0x9710, 0x9869, 0x99d3, 0x9b50, 0x9ce0, 0x9e84, 0xa03c, 0xa20a, 0xa3ed, 0xa5e6, 0xa7f6, 0xaa1e, 0xac5d,
|
||||
0xaeb3, 0xb123, 0xb3aa, 0xb64a, 0xb903, 0xbbd4, 0xbebe, 0xc1c0, 0xc4d9, 0xc80a, 0xcb52, 0xceaf, 0xd221,
|
||||
0xd5a8, 0xd941, 0xdcec, 0xe0a7, 0xe470, 0xe847, 0xec29, 0xf015, 0xf409, 0xf803, 0xfc00,
|
||||
};
|
||||
|
||||
const q15_t tanhHTable_q15[192] = {
|
||||
0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f, 0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14,
|
||||
0x7f30, 0x7f48, 0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc, 0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7,
|
||||
0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7, 0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7, 0x7ff8, 0x7ff9,
|
||||
0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd, 0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
|
||||
0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
|
||||
0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8002,
|
||||
0x8002, 0x8002, 0x8002, 0x8003, 0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007, 0x8008, 0x8009,
|
||||
0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013, 0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
|
||||
0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f, 0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e,
|
||||
0x8156, 0x8183, 0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
|
||||
};
|
||||
@@ -0,0 +1,121 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_no_shift.c
|
||||
* Description: Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to Q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the Q7 input vector
|
||||
* @param[out] *pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*
|
||||
* \par Description:
|
||||
*
|
||||
* The equation used for the conversion process is:
|
||||
*
|
||||
* <pre>
|
||||
* pDst[n] = (q15_t) pSrc[n]; 0 <= n < blockSize.
|
||||
* </pre>
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize)
|
||||
{
|
||||
const q7_t *pIn = pSrc;
|
||||
uint32_t blkCnt;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
q31_t in;
|
||||
q31_t in1, in2;
|
||||
q31_t out1, out2;
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. */
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
in = arm_nn_read_q7x4_ia(&pIn);
|
||||
|
||||
/* rotatate in by 8 and extend two q7_t values to q15_t values */
|
||||
in1 = __SXTB16(__ROR((uint32_t)in, 8));
|
||||
|
||||
/* extend remaining two q7_t values to q15_t values */
|
||||
in2 = __SXTB16(in);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
out2 = (int32_t)__PKHTB(in1, in2, 16);
|
||||
out1 = (int32_t)__PKHBT(in2, in1, 16);
|
||||
#else
|
||||
out1 = (int32_t)__PKHTB(in1, in2, 16);
|
||||
out2 = (int32_t)__PKHBT(in2, in1, 16);
|
||||
#endif
|
||||
arm_nn_write_q15x2_ia(&pDst, out1);
|
||||
arm_nn_write_q15x2_ia(&pDst, out2);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4u;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Loop over blockSize number of values */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
*pDst++ = (q15_t)*pIn++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of nndata_convert group
|
||||
*/
|
||||
@@ -0,0 +1,143 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_reordered_no_shift.c
|
||||
* Description: Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
|
||||
*
|
||||
* $Date: July 20, 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
|
||||
* @param[in] *pSrc points to the Q7 input vector
|
||||
* @param[out] *pDst points to the Q15 output vector
|
||||
* @param[in] blockSize length of the input vector
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* This function does the q7 to q15 expansion with re-ordering
|
||||
*
|
||||
* <pre>
|
||||
* | A1 | A2 | A3 | A4 |
|
||||
*
|
||||
* 0 7 8 15 16 23 24 31
|
||||
* </pre>
|
||||
*
|
||||
* is converted into:
|
||||
*
|
||||
* <pre>
|
||||
* | A1 | A3 | and | A2 | A4 |
|
||||
*
|
||||
* 0 15 16 31 0 15 16 31
|
||||
* </pre>
|
||||
*
|
||||
*
|
||||
* This looks strange but is natural considering how sign-extension is done at
|
||||
* assembly level.
|
||||
*
|
||||
* The expansion of other other oprand will follow the same rule so that the end
|
||||
* results are the same.
|
||||
*
|
||||
* The tail (i.e., last (N % 4) elements) will still be in original order.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_reordered_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize)
|
||||
{
|
||||
const q7_t *pIn = pSrc; /* Src pointer */
|
||||
uint32_t blkCnt; /* loop counter */
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
q31_t in;
|
||||
q31_t in1, in2;
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/*loop Unrolling */
|
||||
blkCnt = blockSize >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
/* C = (q15_t) A << 8 */
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
in = arm_nn_read_q7x4_ia(&pIn);
|
||||
|
||||
/* rotatate in by 8 and extend two q7_t values to q15_t values */
|
||||
in1 = __SXTB16(__ROR((uint32_t)in, 8));
|
||||
|
||||
/* extend remainig two q7_t values to q15_t values */
|
||||
in2 = __SXTB16(in);
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
arm_nn_write_q7x4_ia((q7_t **)&pDst, in2);
|
||||
arm_nn_write_q7x4_ia((q7_t **)&pDst, in1);
|
||||
#else
|
||||
arm_nn_write_q7x4_ia((q7_t **)&pDst, in1);
|
||||
arm_nn_write_q7x4_ia((q7_t **)&pDst, in2);
|
||||
#endif
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4u;
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Loop over blockSize number of values */
|
||||
blkCnt = blockSize;
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
while (blkCnt > 0u)
|
||||
{
|
||||
/* C = (q15_t) A << 8 */
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
*pDst++ = (q15_t)*pIn++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of q7_to_x group
|
||||
*/
|
||||
@@ -0,0 +1,100 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_reordered_with_offset.c
|
||||
* Description: Converts the elements of the Q7 vector to a reordered Q15 vector with an added offset. The re-ordering
|
||||
* is a signature of sign extension intrinsic(DSP extension).
|
||||
*
|
||||
* $Date: May 29, 2020
|
||||
* $Revision: V.2.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Converts the elements of the Q7 vector to a reordered Q15 vector with an added offset.
|
||||
*
|
||||
* @note Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
uint32_t block_cnt;
|
||||
/* Run the below code for cores that support SIMD instructions */
|
||||
q31_t in_q7x4;
|
||||
q31_t out_q15x2_1;
|
||||
q31_t out_q15x2_2;
|
||||
|
||||
/*loop unrolling */
|
||||
block_cnt = block_size >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. */
|
||||
const q31_t offset_q15x2 = (q31_t)__PKHBT(offset, offset, 16);
|
||||
while (block_cnt > 0u)
|
||||
{
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
in_q7x4 = arm_nn_read_q7x4_ia(&src);
|
||||
|
||||
/* Extract and sign extend each of the four q7 values to q15 */
|
||||
out_q15x2_1 = __SXTAB16(offset_q15x2, __ROR((uint32_t)in_q7x4, 8));
|
||||
out_q15x2_2 = __SXTAB16(offset_q15x2, in_q7x4);
|
||||
|
||||
arm_nn_write_q15x2_ia(&dst, out_q15x2_2);
|
||||
arm_nn_write_q15x2_ia(&dst, out_q15x2_1);
|
||||
|
||||
block_cnt--;
|
||||
}
|
||||
/* Handle left over samples */
|
||||
block_cnt = block_size % 0x4u;
|
||||
|
||||
while (block_cnt > 0u)
|
||||
{
|
||||
*dst++ = (q15_t)*src++ + offset;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
block_cnt--;
|
||||
}
|
||||
#else
|
||||
(void)src;
|
||||
(void)dst;
|
||||
(void)block_size;
|
||||
(void)offset;
|
||||
/* Not available */
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of nndata_convert group
|
||||
*/
|
||||
@@ -0,0 +1,114 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in_q7x4 compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in_q7x4 writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_q7_to_q15_with_offset.c
|
||||
* Description: Converts the elements of the Q7 vector to Q15 vector with an added offset
|
||||
*
|
||||
* $Date: March 3, 2020
|
||||
* $Revision: V.2.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup nndata_convert
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset)
|
||||
{
|
||||
int block_cnt;
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
int16x8_t source;
|
||||
const int16x8_t source_offset = vdupq_n_s16(offset);
|
||||
block_cnt = block_size / 8;
|
||||
|
||||
while (block_cnt > 0)
|
||||
{
|
||||
source = vldrbq_s16(src);
|
||||
source = vaddq_s16(source, source_offset);
|
||||
vstrhq_s16(dst, source);
|
||||
dst += 8;
|
||||
src += 8;
|
||||
block_cnt--;
|
||||
}
|
||||
|
||||
block_cnt = block_size & 0x7;
|
||||
|
||||
#elif defined(ARM_MATH_DSP)
|
||||
/* Run the below code for cores that support SIMD instructions */
|
||||
q31_t in_q7x4;
|
||||
q31_t in_q15x2_1;
|
||||
q31_t in_q15x2_2;
|
||||
q31_t out_q15x2_1;
|
||||
q31_t out_q15x2_2;
|
||||
|
||||
/*loop unrolling */
|
||||
block_cnt = block_size >> 2;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. */
|
||||
const q31_t offset_q15x2 = __PKHBT(offset, offset, 16);
|
||||
while (block_cnt > 0)
|
||||
{
|
||||
/* convert from q7 to q15 and then store the results in the destination buffer */
|
||||
in_q7x4 = arm_nn_read_q7x4_ia(&src);
|
||||
|
||||
/* Extract and sign extend each of the four q7 values to q15 */
|
||||
in_q15x2_1 = __SXTAB16(offset_q15x2, __ROR(in_q7x4, 8));
|
||||
in_q15x2_2 = __SXTAB16(offset_q15x2, in_q7x4);
|
||||
|
||||
out_q15x2_2 = __PKHTB(in_q15x2_1, in_q15x2_2, 16);
|
||||
out_q15x2_1 = __PKHBT(in_q15x2_2, in_q15x2_1, 16);
|
||||
|
||||
arm_nn_write_q15x2_ia(&dst, out_q15x2_1);
|
||||
arm_nn_write_q15x2_ia(&dst, out_q15x2_2);
|
||||
|
||||
block_cnt--;
|
||||
}
|
||||
/* Handle left over samples */
|
||||
block_cnt = block_size % 0x4;
|
||||
|
||||
#else
|
||||
/* Run the below code for Cortex-M0 */
|
||||
/* Loop over block_size number of values */
|
||||
block_cnt = block_size;
|
||||
#endif
|
||||
|
||||
while (block_cnt > 0)
|
||||
{
|
||||
*dst++ = (q15_t)*src++ + offset;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
block_cnt--;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of nndata_convert group
|
||||
*/
|
||||
24
Drivers/CMSIS/NN/Source/PoolingFunctions/CMakeLists.txt
Normal file
24
Drivers/CMSIS/NN/Source/PoolingFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,24 @@
|
||||
#
|
||||
# Copyright (c) 2019-2022 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8.c")
|
||||
file(GLOB SRC_S16 "./*_s16.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC} ${SRC_S16})
|
||||
|
||||
|
||||
|
||||
128
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s16.c
Normal file
128
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s16.c
Normal file
@@ -0,0 +1,128 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_avgpool_s16.c
|
||||
* Description: Pooling function implementations
|
||||
*
|
||||
* $Date: 3. February 2022
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Pooling
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s16 average pooling function
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
arm_status arm_avgpool_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_pool_params *pool_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q15_t *src,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q15_t *dst)
|
||||
{
|
||||
(void)ctx;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t stride_y = pool_params->stride.h;
|
||||
const int32_t stride_x = pool_params->stride.w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t pad_y = pool_params->padding.h;
|
||||
const int32_t pad_x = pool_params->padding.w;
|
||||
const int32_t act_min = pool_params->activation.min;
|
||||
const int32_t act_max = pool_params->activation.max;
|
||||
const int32_t ch_src = input_dims->c;
|
||||
|
||||
/* Reference C code adapted from CMSIS-NN arm_avgpool_s8.c.
|
||||
*/
|
||||
|
||||
for (int i_y = 0, base_idx_y = -pad_y; i_y < output_y; base_idx_y += stride_y, i_y++)
|
||||
{
|
||||
for (int i_x = 0, base_idx_x = -pad_x; i_x < output_x; base_idx_x += stride_x, i_x++)
|
||||
{
|
||||
/* Condition for kernel start dimension: (base_idx_<x,y> + kernel_<x,y>_start) >= 0 */
|
||||
const int32_t ker_y_start = MAX(0, -base_idx_y);
|
||||
const int32_t ker_x_start = MAX(0, -base_idx_x);
|
||||
|
||||
/* Condition for kernel end dimension: (base_idx_<x,y> + kernel_<x,y>_end) < dim_src_<width,height> */
|
||||
const int32_t kernel_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int32_t kernel_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
|
||||
for (int i_ch_in = 0; i_ch_in < ch_src; i_ch_in++)
|
||||
{
|
||||
int sum = 0;
|
||||
int count = 0;
|
||||
|
||||
for (int k_y = ker_y_start; k_y < kernel_y_end; k_y++)
|
||||
{
|
||||
for (int k_x = ker_x_start; k_x < kernel_x_end; k_x++)
|
||||
{
|
||||
sum += src[i_ch_in + ch_src * (k_x + base_idx_x + (k_y + base_idx_y) * input_x)];
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent static code issue DIVIDE_BY_ZERO.
|
||||
if (count == 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count;
|
||||
sum = MAX(sum, act_min);
|
||||
sum = MIN(sum, act_max);
|
||||
|
||||
dst[i_ch_in + ch_src * (i_x + i_y * output_x)] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t arm_avgpool_s16_get_buffer_size(const int output_x, const int ch_src)
|
||||
{
|
||||
(void)output_x;
|
||||
(void)ch_src;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Pooling group
|
||||
*/
|
||||
401
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c
Normal file
401
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c
Normal file
@@ -0,0 +1,401 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_avgpool_s8.c
|
||||
* Description: Pooling function implementations
|
||||
*
|
||||
* $Date: 01. March 2021
|
||||
* $Revision: V.2.0.4
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
|
||||
static void scale_q31_to_q7_and_clamp(const q31_t *buffer,
|
||||
q7_t *target,
|
||||
int32_t length,
|
||||
const int32_t count,
|
||||
const int act_min,
|
||||
const int act_max)
|
||||
{
|
||||
const int half_count = count / 2;
|
||||
|
||||
// Prevent static code issue DIVIDE_BY_ZERO.
|
||||
if (count == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < length; i++)
|
||||
{
|
||||
int32_t sum = buffer[i] > 0 ? (buffer[i] + half_count) : (buffer[i] - half_count);
|
||||
sum = sum / count;
|
||||
sum = MAX(sum, act_min);
|
||||
sum = MIN(sum, act_max);
|
||||
|
||||
target[i] = (q7_t)sum;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Pooling
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* s8 average pooling function
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
|
||||
arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_pool_params *pool_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *src,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *dst)
|
||||
{
|
||||
(void)ctx;
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t stride_y = pool_params->stride.h;
|
||||
const int32_t stride_x = pool_params->stride.w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t pad_y = pool_params->padding.h;
|
||||
const int32_t pad_x = pool_params->padding.w;
|
||||
const int32_t act_min = pool_params->activation.min;
|
||||
const int32_t act_max = pool_params->activation.max;
|
||||
const int32_t ch_src = input_dims->c;
|
||||
|
||||
int32_t i_x, i_y;
|
||||
int32_t k_x, k_y;
|
||||
|
||||
for (i_y = 0; i_y < output_y; i_y++)
|
||||
{
|
||||
for (i_x = 0; i_x < output_x; i_x++)
|
||||
{
|
||||
|
||||
int32_t k_y_start, k_y_end;
|
||||
int32_t k_x_start, k_x_end;
|
||||
int32_t chCnt;
|
||||
const int8_t *pTmp, *pTmpInner;
|
||||
int8_t *pDst;
|
||||
|
||||
k_y_start = MAX(0, i_y * stride_y - pad_y);
|
||||
k_y_end = MIN(i_y * stride_y - pad_y + kernel_y, input_y);
|
||||
|
||||
k_x_start = MAX(0, i_x * stride_x - pad_x);
|
||||
k_x_end = MIN(i_x * stride_x - pad_x + kernel_x, input_x);
|
||||
|
||||
pTmp = src;
|
||||
pDst = &dst[ch_src * (i_x + i_y * output_x)];
|
||||
|
||||
chCnt = ch_src >> 4;
|
||||
while (chCnt > 0)
|
||||
{
|
||||
int32x4_t sumV1, sumV2, sumV3, sumV4;
|
||||
|
||||
int8x16_t tempV;
|
||||
int16x8_t tempVLO, tempVHI;
|
||||
int32x4_t tempVLOLO, tempVLOHI, tempVHILO, tempVHIHI;
|
||||
int32_t count = 0;
|
||||
|
||||
sumV1 = vdupq_n_s32(0);
|
||||
sumV2 = vdupq_n_s32(0);
|
||||
sumV3 = vdupq_n_s32(0);
|
||||
sumV4 = vdupq_n_s32(0);
|
||||
|
||||
for (k_y = k_y_start; k_y < k_y_end; k_y++)
|
||||
{
|
||||
for (k_x = k_x_start; k_x < k_x_end; k_x++)
|
||||
{
|
||||
pTmpInner = pTmp + (ch_src * (k_x + k_y * input_x));
|
||||
tempV = vldrbq_s8(pTmpInner);
|
||||
|
||||
tempVLO = vmovlbq_s8(tempV);
|
||||
tempVHI = vmovltq_s8(tempV);
|
||||
|
||||
tempVLOLO = vmovlbq_s16(tempVLO);
|
||||
tempVLOHI = vmovltq_s16(tempVLO);
|
||||
|
||||
tempVHILO = vmovlbq_s16(tempVHI);
|
||||
tempVHIHI = vmovltq_s16(tempVHI);
|
||||
|
||||
sumV1 = vaddq_s32(sumV1, tempVLOLO);
|
||||
sumV2 = vaddq_s32(sumV2, tempVLOHI);
|
||||
sumV3 = vaddq_s32(sumV3, tempVHILO);
|
||||
sumV4 = vaddq_s32(sumV4, tempVHIHI);
|
||||
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent static code issue DIVIDE_BY_ZERO.
|
||||
if (count == 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
sumV1[0] = sumV1[0] > 0 ? (sumV1[0] + count / 2) / count : (sumV1[0] - count / 2) / count;
|
||||
sumV1[1] = sumV1[1] > 0 ? (sumV1[1] + count / 2) / count : (sumV1[1] - count / 2) / count;
|
||||
sumV1[2] = sumV1[2] > 0 ? (sumV1[2] + count / 2) / count : (sumV1[2] - count / 2) / count;
|
||||
sumV1[3] = sumV1[3] > 0 ? (sumV1[3] + count / 2) / count : (sumV1[3] - count / 2) / count;
|
||||
|
||||
sumV2[0] = sumV2[0] > 0 ? (sumV2[0] + count / 2) / count : (sumV2[0] - count / 2) / count;
|
||||
sumV2[1] = sumV2[1] > 0 ? (sumV2[1] + count / 2) / count : (sumV2[1] - count / 2) / count;
|
||||
sumV2[2] = sumV2[2] > 0 ? (sumV2[2] + count / 2) / count : (sumV2[2] - count / 2) / count;
|
||||
sumV2[3] = sumV2[3] > 0 ? (sumV2[3] + count / 2) / count : (sumV2[3] - count / 2) / count;
|
||||
|
||||
sumV3[0] = sumV3[0] > 0 ? (sumV3[0] + count / 2) / count : (sumV3[0] - count / 2) / count;
|
||||
sumV3[1] = sumV3[1] > 0 ? (sumV3[1] + count / 2) / count : (sumV3[1] - count / 2) / count;
|
||||
sumV3[2] = sumV3[2] > 0 ? (sumV3[2] + count / 2) / count : (sumV3[2] - count / 2) / count;
|
||||
sumV3[3] = sumV3[3] > 0 ? (sumV3[3] + count / 2) / count : (sumV3[3] - count / 2) / count;
|
||||
|
||||
sumV4[0] = sumV4[0] > 0 ? (sumV4[0] + count / 2) / count : (sumV4[0] - count / 2) / count;
|
||||
sumV4[1] = sumV4[1] > 0 ? (sumV4[1] + count / 2) / count : (sumV4[1] - count / 2) / count;
|
||||
sumV4[2] = sumV4[2] > 0 ? (sumV4[2] + count / 2) / count : (sumV4[2] - count / 2) / count;
|
||||
sumV4[3] = sumV4[3] > 0 ? (sumV4[3] + count / 2) / count : (sumV4[3] - count / 2) / count;
|
||||
|
||||
sumV1 = vmaxq_s32(sumV1, vdupq_n_s32(act_min));
|
||||
sumV1 = vminq_s32(sumV1, vdupq_n_s32(act_max));
|
||||
|
||||
sumV2 = vmaxq_s32(sumV2, vdupq_n_s32(act_min));
|
||||
sumV2 = vminq_s32(sumV2, vdupq_n_s32(act_max));
|
||||
|
||||
sumV3 = vmaxq_s32(sumV3, vdupq_n_s32(act_min));
|
||||
sumV3 = vminq_s32(sumV3, vdupq_n_s32(act_max));
|
||||
|
||||
sumV4 = vmaxq_s32(sumV4, vdupq_n_s32(act_min));
|
||||
sumV4 = vminq_s32(sumV4, vdupq_n_s32(act_max));
|
||||
|
||||
tempVLO = vmovnbq_s32(tempVLO, sumV1);
|
||||
tempVLO = vmovntq_s32(tempVLO, sumV2);
|
||||
|
||||
tempVHI = vmovnbq_s32(tempVHI, sumV3);
|
||||
tempVHI = vmovntq_s32(tempVHI, sumV4);
|
||||
|
||||
tempV = vmovnbq_s16(tempV, tempVLO);
|
||||
tempV = vmovntq_s16(tempV, tempVHI);
|
||||
|
||||
vstrbq_s8(pDst, tempV);
|
||||
pDst += 16;
|
||||
|
||||
chCnt--;
|
||||
pTmp += 16;
|
||||
}
|
||||
|
||||
chCnt = ch_src & 0xF;
|
||||
while (chCnt > 0)
|
||||
{
|
||||
int32_t sum = 0;
|
||||
int32_t count = 0;
|
||||
|
||||
for (k_y = k_y_start; k_y < k_y_end; k_y++)
|
||||
{
|
||||
for (k_x = k_x_start; k_x < k_x_end; k_x++)
|
||||
{
|
||||
sum += pTmp[ch_src * (k_x + k_y * input_x)];
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent static code issue DIVIDE_BY_ZERO.
|
||||
if (count == 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count;
|
||||
sum = MAX(sum, act_min);
|
||||
sum = MIN(sum, act_max);
|
||||
|
||||
*pDst++ = sum;
|
||||
|
||||
chCnt--;
|
||||
pTmp++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
#else
|
||||
arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_pool_params *pool_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *src,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *dst)
|
||||
{
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t stride_y = pool_params->stride.h;
|
||||
const int32_t stride_x = pool_params->stride.w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t pad_y = pool_params->padding.h;
|
||||
const int32_t pad_x = pool_params->padding.w;
|
||||
const int32_t act_min = pool_params->activation.min;
|
||||
const int32_t act_max = pool_params->activation.max;
|
||||
const int32_t ch_src = input_dims->c;
|
||||
|
||||
if (ctx->buf == NULL && arm_avgpool_s8_get_buffer_size(output_dims->w, input_dims->c))
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q31_t *buffer = (q31_t *)ctx->buf;
|
||||
|
||||
#if defined(ARM_MATH_DSP)
|
||||
|
||||
/* Run the following code for CPU's with DSP extension
|
||||
*/
|
||||
for (int i_y = 0, idx_y = -pad_y; i_y < output_y; idx_y += stride_y, i_y++)
|
||||
{
|
||||
for (int i_x = 0, idx_x = -pad_x; i_x < output_x; idx_x += stride_x, i_x++)
|
||||
{
|
||||
/* Condition for kernel start dimension:
|
||||
(base_idx_<x,y> + kernel_<x,y>_start) >= 0 */
|
||||
const int32_t kernel_y_start = MAX(0, -idx_y);
|
||||
const int32_t kernel_x_start = MAX(0, -idx_x);
|
||||
|
||||
/* Condition for kernel end dimension:
|
||||
(base_idx_<x,y> + kernel_<x,y>_end) < dim_src_<width,height> */
|
||||
const int32_t kernel_y_end = MIN(kernel_y, input_y - idx_y);
|
||||
const int32_t kernel_x_end = MIN(kernel_x, input_x - idx_x);
|
||||
|
||||
int count = 0;
|
||||
|
||||
for (int k_y = kernel_y_start; k_y < kernel_y_end; k_y++)
|
||||
{
|
||||
for (int k_x = kernel_x_start; k_x < kernel_x_end; k_x++)
|
||||
{
|
||||
const q7_t *start = src + ch_src * (k_x + idx_x + (k_y + idx_y) * input_x);
|
||||
|
||||
if (count == 0)
|
||||
{
|
||||
for (int i = 0; i < ch_src; i++)
|
||||
{
|
||||
buffer[i] = start[i];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < ch_src; i++)
|
||||
{
|
||||
buffer[i] = __QADD(start[i], buffer[i]);
|
||||
}
|
||||
}
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent static code issue DIVIDE_BY_ZERO.
|
||||
if (count == 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
scale_q31_to_q7_and_clamp(buffer, dst, ch_src, count, act_min, act_max);
|
||||
dst += ch_src;
|
||||
}
|
||||
}
|
||||
#else
|
||||
|
||||
/* Reference C code adapted from CMSIS-NN arm_avepool_q7_HWC.
|
||||
*/
|
||||
(void)buffer;
|
||||
int16_t i_ch_in, i_x, i_y;
|
||||
int16_t k_x, k_y;
|
||||
|
||||
for (i_y = 0; i_y < output_y; i_y++)
|
||||
{
|
||||
for (i_x = 0; i_x < output_x; i_x++)
|
||||
{
|
||||
for (i_ch_in = 0; i_ch_in < ch_src; i_ch_in++)
|
||||
{
|
||||
int sum = 0;
|
||||
int count = 0;
|
||||
for (k_y = i_y * stride_y - pad_y; k_y < i_y * stride_y - pad_y + kernel_y; k_y++)
|
||||
{
|
||||
for (k_x = i_x * stride_x - pad_x; k_x < i_x * stride_x - pad_x + kernel_x; k_x++)
|
||||
{
|
||||
if (k_y >= 0 && k_x >= 0 && k_y < input_y && k_x < input_x)
|
||||
{
|
||||
sum += src[i_ch_in + ch_src * (k_x + k_y * input_x)];
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent static code issue DIVIDE_BY_ZERO.
|
||||
if (count == 0)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count;
|
||||
sum = MAX(sum, act_min);
|
||||
sum = MIN(sum, act_max);
|
||||
|
||||
dst[i_ch_in + ch_src * (i_x + i_y * output_x)] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_MVEI */
|
||||
|
||||
int32_t arm_avgpool_s8_get_buffer_size(const int output_x, const int ch_src)
|
||||
{
|
||||
(void)output_x;
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
return (ch_src * sizeof(int32_t));
|
||||
#else
|
||||
(void)ch_src;
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
/**
|
||||
* @} end of Pooling group
|
||||
*/
|
||||
180
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s16.c
Normal file
180
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s16.c
Normal file
@@ -0,0 +1,180 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_max_pool_s16.c
|
||||
* Description: Pooling function implementations
|
||||
*
|
||||
* $Date: 24. January 2022
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
static void compare_and_replace_if_larger(int16_t *base, const int16_t *target, int32_t length)
|
||||
{
|
||||
q15_t *dst = base;
|
||||
const q15_t *src = target;
|
||||
union arm_nnword ref_max;
|
||||
union arm_nnword comp_max;
|
||||
int32_t cnt = length >> 1;
|
||||
|
||||
while (cnt > 0l)
|
||||
{
|
||||
ref_max.word = arm_nn_read_q15x2(dst);
|
||||
comp_max.word = arm_nn_read_q15x2_ia(&src);
|
||||
|
||||
if (comp_max.half_words[0] > ref_max.half_words[0])
|
||||
{
|
||||
ref_max.half_words[0] = comp_max.half_words[0];
|
||||
}
|
||||
if (comp_max.half_words[1] > ref_max.half_words[1])
|
||||
{
|
||||
ref_max.half_words[1] = comp_max.half_words[1];
|
||||
}
|
||||
|
||||
arm_nn_write_q15x2_ia(&dst, ref_max.word);
|
||||
|
||||
cnt--;
|
||||
}
|
||||
|
||||
if (length & 0x1)
|
||||
{
|
||||
if (*src > *dst)
|
||||
{
|
||||
*dst = *src;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void clamp_output(int16_t *source, int32_t length, const int16_t act_min, const int16_t act_max)
|
||||
{
|
||||
union arm_nnword in;
|
||||
int32_t cnt = length >> 1;
|
||||
|
||||
while (cnt > 0l)
|
||||
{
|
||||
in.word = arm_nn_read_q15x2(source);
|
||||
|
||||
in.half_words[0] = MAX(in.half_words[0], act_min);
|
||||
in.half_words[0] = MIN(in.half_words[0], act_max);
|
||||
in.half_words[1] = MAX(in.half_words[1], act_min);
|
||||
in.half_words[1] = MIN(in.half_words[1], act_max);
|
||||
|
||||
arm_nn_write_q15x2_ia(&source, in.word);
|
||||
cnt--;
|
||||
}
|
||||
|
||||
if (length & 0x1)
|
||||
{
|
||||
int16_t comp = *source;
|
||||
comp = MAX(comp, act_min);
|
||||
comp = MIN(comp, act_max);
|
||||
*source = comp;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Pooling
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Optimized s16 max pooling function
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_max_pool_s16(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_pool_params *pool_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const int16_t *src,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
int16_t *dst)
|
||||
{
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t stride_y = pool_params->stride.h;
|
||||
const int32_t stride_x = pool_params->stride.w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t pad_y = pool_params->padding.h;
|
||||
const int32_t pad_x = pool_params->padding.w;
|
||||
const int16_t act_min = pool_params->activation.min;
|
||||
const int16_t act_max = pool_params->activation.max;
|
||||
const int32_t channel_in = input_dims->c;
|
||||
(void)ctx;
|
||||
int16_t *dst_base = dst;
|
||||
|
||||
for (int i_y = 0, base_idx_y = -pad_y; i_y < output_y; base_idx_y += stride_y, i_y++)
|
||||
{
|
||||
for (int i_x = 0, base_idx_x = -pad_x; i_x < output_x; base_idx_x += stride_x, i_x++)
|
||||
{
|
||||
/* Condition for kernel start dimension: (base_idx_<x,y> + kernel_<x,y>_start) >= 0 */
|
||||
const int32_t ker_y_start = MAX(0, -base_idx_y);
|
||||
const int32_t ker_x_start = MAX(0, -base_idx_x);
|
||||
|
||||
/* Condition for kernel end dimension: (base_idx_<x,y> + kernel_<x,y>_end) < dim_src_<width,height> */
|
||||
const int32_t kernel_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int32_t kernel_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
|
||||
int count = 0;
|
||||
|
||||
for (int k_y = ker_y_start; k_y < kernel_y_end; k_y++)
|
||||
{
|
||||
for (int k_x = ker_x_start; k_x < kernel_x_end; k_x++)
|
||||
{
|
||||
const int16_t *start = src + channel_in * (k_x + base_idx_x + (k_y + base_idx_y) * input_x);
|
||||
|
||||
if (count == 0)
|
||||
{
|
||||
memcpy(dst, start, channel_in * sizeof(int16_t));
|
||||
count++;
|
||||
}
|
||||
else
|
||||
{
|
||||
compare_and_replace_if_larger(dst, start, channel_in);
|
||||
}
|
||||
}
|
||||
}
|
||||
/* 'count' is expected to be non-zero here. */
|
||||
dst += channel_in;
|
||||
}
|
||||
}
|
||||
|
||||
clamp_output(dst_base, output_x * output_y * channel_in, act_min, act_max);
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Pooling group
|
||||
*/
|
||||
229
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c
Normal file
229
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c
Normal file
@@ -0,0 +1,229 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_max_pool_s8.c
|
||||
* Description: Pooling function implementations
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.2.0.3
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
static void compare_and_replace_if_larger_q7(q7_t *base, const q7_t *target, int32_t length)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t loop_count = (length + 15) / 16;
|
||||
for (int i = 0; i < loop_count; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q((uint32_t)length);
|
||||
const int8x16_t op_1 = vldrbq_z_s8(base, p);
|
||||
const int8x16_t op_2 = vldrbq_z_s8(target, p);
|
||||
const int8x16_t max = vmaxq_m_s8(vuninitializedq_s8(), op_1, op_2, p);
|
||||
vstrbq_p_s8(base, max, p);
|
||||
base += 16;
|
||||
target += 16;
|
||||
length -= 16;
|
||||
}
|
||||
#else
|
||||
q7_t *dst = base;
|
||||
const q7_t *src = target;
|
||||
union arm_nnword ref_max;
|
||||
union arm_nnword comp_max;
|
||||
int32_t cnt = length >> 2;
|
||||
|
||||
while (cnt > 0l)
|
||||
{
|
||||
ref_max.word = arm_nn_read_q7x4(dst);
|
||||
comp_max.word = arm_nn_read_q7x4_ia(&src);
|
||||
|
||||
if (comp_max.bytes[0] > ref_max.bytes[0])
|
||||
{
|
||||
ref_max.bytes[0] = comp_max.bytes[0];
|
||||
}
|
||||
if (comp_max.bytes[1] > ref_max.bytes[1])
|
||||
{
|
||||
ref_max.bytes[1] = comp_max.bytes[1];
|
||||
}
|
||||
if (comp_max.bytes[2] > ref_max.bytes[2])
|
||||
{
|
||||
ref_max.bytes[2] = comp_max.bytes[2];
|
||||
}
|
||||
if (comp_max.bytes[3] > ref_max.bytes[3])
|
||||
{
|
||||
ref_max.bytes[3] = comp_max.bytes[3];
|
||||
}
|
||||
|
||||
arm_nn_write_q7x4_ia(&dst, ref_max.word);
|
||||
|
||||
cnt--;
|
||||
}
|
||||
|
||||
cnt = length & 0x3;
|
||||
while (cnt > 0l)
|
||||
{
|
||||
if (*src > *dst)
|
||||
{
|
||||
*dst = *src;
|
||||
}
|
||||
dst++;
|
||||
src++;
|
||||
cnt--;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void clamp_output(q7_t *source, int32_t length, const int32_t act_min, const int32_t act_max)
|
||||
{
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t loop_count = (length + 15) / 16;
|
||||
for (int i = 0; i < loop_count; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q((uint32_t)length);
|
||||
length -= 16;
|
||||
const int8x16_t src = vldrbq_z_s8(source, p);
|
||||
const int8x16_t predicated_min = vdupq_m_n_s8(vuninitializedq_s8(), (int8_t)act_min, p);
|
||||
const int8x16_t predicated_max = vdupq_m_n_s8(vuninitializedq_s8(), (int8_t)act_max, p);
|
||||
int8x16_t res = vmaxq_m_s8(vuninitializedq_s8(), src, predicated_min, p);
|
||||
res = vminq_m_s8(vuninitializedq_s8(), res, predicated_max, p);
|
||||
vstrbq_p_s8(source, res, p);
|
||||
source += 16;
|
||||
}
|
||||
#else
|
||||
union arm_nnword in;
|
||||
int32_t cnt = length >> 2;
|
||||
|
||||
while (cnt > 0l)
|
||||
{
|
||||
in.word = arm_nn_read_q7x4(source);
|
||||
|
||||
in.bytes[0] = MAX(in.bytes[0], act_min);
|
||||
in.bytes[0] = MIN(in.bytes[0], act_max);
|
||||
in.bytes[1] = MAX(in.bytes[1], act_min);
|
||||
in.bytes[1] = MIN(in.bytes[1], act_max);
|
||||
in.bytes[2] = MAX(in.bytes[2], act_min);
|
||||
in.bytes[2] = MIN(in.bytes[2], act_max);
|
||||
in.bytes[3] = MAX(in.bytes[3], act_min);
|
||||
in.bytes[3] = MIN(in.bytes[3], act_max);
|
||||
|
||||
arm_nn_write_q7x4_ia(&source, in.word);
|
||||
cnt--;
|
||||
}
|
||||
|
||||
cnt = length & 0x3;
|
||||
while (cnt > 0l)
|
||||
{
|
||||
int32_t comp = *source;
|
||||
comp = MAX(comp, act_min);
|
||||
comp = MIN(comp, act_max);
|
||||
*source++ = (int8_t)comp;
|
||||
cnt--;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Pooling
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Optimized s8 max pooling function
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
|
||||
const cmsis_nn_pool_params *pool_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *src,
|
||||
const cmsis_nn_dims *filter_dims,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *dst)
|
||||
{
|
||||
const int32_t input_y = input_dims->h;
|
||||
const int32_t input_x = input_dims->w;
|
||||
const int32_t output_y = output_dims->h;
|
||||
const int32_t output_x = output_dims->w;
|
||||
const int32_t stride_y = pool_params->stride.h;
|
||||
const int32_t stride_x = pool_params->stride.w;
|
||||
const int32_t kernel_y = filter_dims->h;
|
||||
const int32_t kernel_x = filter_dims->w;
|
||||
const int32_t pad_y = pool_params->padding.h;
|
||||
const int32_t pad_x = pool_params->padding.w;
|
||||
const int32_t act_min = pool_params->activation.min;
|
||||
const int32_t act_max = pool_params->activation.max;
|
||||
const int32_t channel_in = input_dims->c;
|
||||
(void)ctx;
|
||||
q7_t *dst_base = dst;
|
||||
|
||||
for (int i_y = 0, base_idx_y = -pad_y; i_y < output_y; base_idx_y += stride_y, i_y++)
|
||||
{
|
||||
for (int i_x = 0, base_idx_x = -pad_x; i_x < output_x; base_idx_x += stride_x, i_x++)
|
||||
{
|
||||
/* Condition for kernel start dimension: (base_idx_<x,y> + kernel_<x,y>_start) >= 0 */
|
||||
const int32_t ker_y_start = MAX(0, -base_idx_y);
|
||||
const int32_t ker_x_start = MAX(0, -base_idx_x);
|
||||
|
||||
/* Condition for kernel end dimension: (base_idx_<x,y> + kernel_<x,y>_end) < dim_src_<width,height> */
|
||||
const int32_t kernel_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||||
const int32_t kernel_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||||
|
||||
int count = 0;
|
||||
|
||||
for (int k_y = ker_y_start; k_y < kernel_y_end; k_y++)
|
||||
{
|
||||
for (int k_x = ker_x_start; k_x < kernel_x_end; k_x++)
|
||||
{
|
||||
const q7_t *start = src + channel_in * (k_x + base_idx_x + (k_y + base_idx_y) * input_x);
|
||||
|
||||
if (count == 0)
|
||||
{
|
||||
arm_memcpy_q7(dst, start, channel_in);
|
||||
count++;
|
||||
}
|
||||
else
|
||||
{
|
||||
compare_and_replace_if_larger_q7(dst, start, channel_in);
|
||||
}
|
||||
}
|
||||
}
|
||||
/* 'count' is expected to be non-zero here. */
|
||||
dst += channel_in;
|
||||
}
|
||||
}
|
||||
|
||||
clamp_output(dst_base, output_x * output_y * channel_in, act_min, act_max);
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Pooling group
|
||||
*/
|
||||
464
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
Normal file
464
Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
Normal file
@@ -0,0 +1,464 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_pool_q7_HWC.c
|
||||
* Description: Pooling function implementations
|
||||
*
|
||||
* $Date: 20. July 2021
|
||||
* $Revision: V.1.1.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
|
||||
/**
|
||||
* @brief A few utility functions used by pooling functions
|
||||
*
|
||||
*
|
||||
*/
|
||||
|
||||
static void buffer_scale_back_q15_to_q7(q15_t *buffer, q7_t *target, uint16_t length, uint16_t scale)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < length; i++)
|
||||
{
|
||||
target[i] = (q7_t)(buffer[i] / scale);
|
||||
}
|
||||
}
|
||||
|
||||
static void compare_and_replace_if_larger_q7(q7_t *base, // base data
|
||||
const q7_t *target, // compare target
|
||||
const uint16_t length // data length
|
||||
)
|
||||
{
|
||||
q7_t *pIn = base;
|
||||
const q7_t *pCom = target;
|
||||
union arm_nnword in;
|
||||
union arm_nnword com;
|
||||
uint16_t cnt = length >> 2;
|
||||
|
||||
while (cnt > 0u)
|
||||
{
|
||||
in.word = arm_nn_read_q7x4((const q7_t *)pIn);
|
||||
com.word = arm_nn_read_q7x4_ia((const q7_t **)&pCom);
|
||||
|
||||
// if version
|
||||
if (com.bytes[0] > in.bytes[0])
|
||||
in.bytes[0] = com.bytes[0];
|
||||
if (com.bytes[1] > in.bytes[1])
|
||||
in.bytes[1] = com.bytes[1];
|
||||
if (com.bytes[2] > in.bytes[2])
|
||||
in.bytes[2] = com.bytes[2];
|
||||
if (com.bytes[3] > in.bytes[3])
|
||||
in.bytes[3] = com.bytes[3];
|
||||
|
||||
arm_nn_write_q7x4_ia(&pIn, in.word);
|
||||
|
||||
cnt--;
|
||||
}
|
||||
|
||||
cnt = length & 0x3;
|
||||
while (cnt > 0u)
|
||||
{
|
||||
if (*pCom > *pIn)
|
||||
{
|
||||
*pIn = *pCom;
|
||||
}
|
||||
pIn++;
|
||||
pCom++;
|
||||
cnt--;
|
||||
}
|
||||
}
|
||||
|
||||
static void accumulate_q7_to_q15(q15_t *base, q7_t *target, const uint16_t length)
|
||||
{
|
||||
q15_t *pCnt = base;
|
||||
q7_t *pV = target;
|
||||
q31_t v1, v2, vo1, vo2;
|
||||
uint16_t cnt = length >> 2;
|
||||
q31_t in;
|
||||
|
||||
while (cnt > 0u)
|
||||
{
|
||||
q31_t value = arm_nn_read_q7x4_ia((const q7_t **)&pV);
|
||||
v1 = __SXTB16(__ROR(value, 8));
|
||||
v2 = __SXTB16(value);
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
vo2 = __PKHTB(v1, v2, 16);
|
||||
vo1 = __PKHBT(v2, v1, 16);
|
||||
|
||||
#else
|
||||
|
||||
vo1 = __PKHTB(v1, v2, 16);
|
||||
vo2 = __PKHBT(v2, v1, 16);
|
||||
|
||||
#endif
|
||||
|
||||
in = arm_nn_read_q15x2(pCnt);
|
||||
arm_nn_write_q15x2_ia(&pCnt, __QADD16(vo1, in));
|
||||
|
||||
in = arm_nn_read_q15x2(pCnt);
|
||||
arm_nn_write_q15x2_ia(&pCnt, __QADD16(vo2, in));
|
||||
|
||||
cnt--;
|
||||
}
|
||||
cnt = length & 0x3;
|
||||
while (cnt > 0u)
|
||||
{
|
||||
*pCnt++ += *pV++;
|
||||
cnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ARM_MATH_DSP
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Pooling
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 max pooling function
|
||||
* @param[in, out] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA Not used
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* The pooling function is implemented as split x-pooling then
|
||||
* y-pooling.
|
||||
*
|
||||
* This pooling function is input-destructive. Input data is undefined
|
||||
* after calling this function.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_maxpool_q7_HWC(q7_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const uint16_t dim_im_out,
|
||||
q7_t *bufferA,
|
||||
q7_t *Im_out)
|
||||
{
|
||||
(void)bufferA;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
int16_t i_x, i_y;
|
||||
|
||||
/* first does the pooling along x axis */
|
||||
for (i_y = 0; i_y < dim_im_in; i_y++)
|
||||
{
|
||||
|
||||
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||||
{
|
||||
/* for each output pixel */
|
||||
q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
|
||||
q7_t *win_start;
|
||||
q7_t *win_stop;
|
||||
if (i_x * stride - padding < 0)
|
||||
{
|
||||
win_start = target;
|
||||
}
|
||||
else
|
||||
{
|
||||
win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
|
||||
}
|
||||
|
||||
if (i_x * stride - padding + dim_kernel >= dim_im_in)
|
||||
{
|
||||
win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
|
||||
}
|
||||
else
|
||||
{
|
||||
win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
|
||||
}
|
||||
|
||||
/* first step is to copy over initial data */
|
||||
/* arm_copy_q7(win_start, target, ch_im_in); */
|
||||
memmove(target, win_start, ch_im_in);
|
||||
|
||||
/* start the max operation from the second part */
|
||||
win_start += ch_im_in;
|
||||
for (; win_start < win_stop; win_start += ch_im_in)
|
||||
{
|
||||
compare_and_replace_if_larger_q7(target, win_start, ch_im_in);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* then does the pooling along y axis */
|
||||
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||||
{
|
||||
|
||||
/* for each output row */
|
||||
q7_t *target = Im_out + i_y * dim_im_out * ch_im_in;
|
||||
q7_t *row_start;
|
||||
q7_t *row_end;
|
||||
/* setting the starting row */
|
||||
if (i_y * stride - padding < 0)
|
||||
{
|
||||
row_start = Im_in;
|
||||
}
|
||||
else
|
||||
{
|
||||
row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
|
||||
}
|
||||
/* setting the stopping row */
|
||||
if (i_y * stride - padding + dim_kernel >= dim_im_in)
|
||||
{
|
||||
row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
|
||||
}
|
||||
else
|
||||
{
|
||||
row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
|
||||
}
|
||||
|
||||
/* copy over the first row */
|
||||
/* arm_copy_q7(row_start, target, dim_im_out * ch_im_in); */
|
||||
memmove(target, row_start, dim_im_out * ch_im_in);
|
||||
|
||||
/* move over to next row */
|
||||
row_start += ch_im_in * dim_im_in;
|
||||
|
||||
for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
|
||||
{
|
||||
compare_and_replace_if_larger_q7(target, row_start, dim_im_out * ch_im_in);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
int16_t i_ch_in, i_x, i_y;
|
||||
int16_t k_x, k_y;
|
||||
|
||||
for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
|
||||
{
|
||||
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||||
{
|
||||
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||||
{
|
||||
int max = -129;
|
||||
for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
|
||||
{
|
||||
for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
|
||||
{
|
||||
if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
|
||||
{
|
||||
if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max)
|
||||
{
|
||||
max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Q7 average pooling function
|
||||
* @param[in,out] Im_in pointer to input tensor
|
||||
* @param[in] dim_im_in input tensor dimention
|
||||
* @param[in] ch_im_in number of input tensor channels
|
||||
* @param[in] dim_kernel filter kernel size
|
||||
* @param[in] padding padding sizes
|
||||
* @param[in] stride convolution stride
|
||||
* @param[in] dim_im_out output tensor dimension
|
||||
* @param[in,out] bufferA pointer to buffer space for input
|
||||
* @param[in,out] Im_out pointer to output tensor
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* <b>Buffer size:</b>
|
||||
*
|
||||
* bufferA size: 2*dim_im_out*ch_im_in
|
||||
*
|
||||
* The pooling function is implemented as split x-pooling then
|
||||
* y-pooling.
|
||||
*
|
||||
* This pooling function is input-destructive. Input data is undefined
|
||||
* after calling this function.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_avepool_q7_HWC(q7_t *Im_in,
|
||||
const uint16_t dim_im_in,
|
||||
const uint16_t ch_im_in,
|
||||
const uint16_t dim_kernel,
|
||||
const uint16_t padding,
|
||||
const uint16_t stride,
|
||||
const uint16_t dim_im_out,
|
||||
q7_t *bufferA,
|
||||
q7_t *Im_out)
|
||||
{
|
||||
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||||
|
||||
q15_t *buffer = (q15_t *)bufferA;
|
||||
int16_t i_x, i_y;
|
||||
int16_t count = 0;
|
||||
|
||||
/* first does the pooling along x axis */
|
||||
for (i_y = 0; i_y < dim_im_in; i_y++)
|
||||
{
|
||||
|
||||
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||||
{
|
||||
/* for each output pixel */
|
||||
q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
|
||||
q7_t *win_start;
|
||||
q7_t *win_stop;
|
||||
if (i_x * stride - padding < 0)
|
||||
{
|
||||
win_start = target;
|
||||
}
|
||||
else
|
||||
{
|
||||
win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
|
||||
}
|
||||
|
||||
if (i_x * stride - padding + dim_kernel >= dim_im_in)
|
||||
{
|
||||
win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
|
||||
}
|
||||
else
|
||||
{
|
||||
win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
|
||||
}
|
||||
|
||||
/* first step is to copy over initial data */
|
||||
arm_q7_to_q15_no_shift(win_start, buffer, ch_im_in);
|
||||
count = 1;
|
||||
|
||||
/* start the max operation from the second part */
|
||||
win_start += ch_im_in;
|
||||
for (; win_start < win_stop; win_start += ch_im_in)
|
||||
{
|
||||
accumulate_q7_to_q15(buffer, win_start, ch_im_in);
|
||||
count++;
|
||||
}
|
||||
buffer_scale_back_q15_to_q7(buffer, target, ch_im_in, count);
|
||||
}
|
||||
}
|
||||
|
||||
/* then does the pooling along y axis */
|
||||
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||||
{
|
||||
/* for each output row */
|
||||
q7_t *target = Im_out + i_y * dim_im_out * ch_im_in;
|
||||
q7_t *row_start;
|
||||
q7_t *row_end;
|
||||
/* setting the starting row */
|
||||
if (i_y * stride - padding < 0)
|
||||
{
|
||||
row_start = Im_in;
|
||||
}
|
||||
else
|
||||
{
|
||||
row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
|
||||
}
|
||||
/* setting the stopping row */
|
||||
if (i_y * stride - padding + dim_kernel >= dim_im_in)
|
||||
{
|
||||
row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
|
||||
}
|
||||
else
|
||||
{
|
||||
row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
|
||||
}
|
||||
|
||||
/* copy over the first row */
|
||||
arm_q7_to_q15_no_shift(row_start, buffer, dim_im_out * ch_im_in);
|
||||
count = 1;
|
||||
|
||||
/* move over to next row */
|
||||
row_start += ch_im_in * dim_im_in;
|
||||
|
||||
for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
|
||||
{
|
||||
accumulate_q7_to_q15(buffer, row_start, dim_im_out * ch_im_in);
|
||||
count++;
|
||||
}
|
||||
buffer_scale_back_q15_to_q7(buffer, target, dim_im_out * ch_im_in, count);
|
||||
}
|
||||
|
||||
#else
|
||||
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||||
|
||||
(void)bufferA;
|
||||
int16_t i_ch_in, i_x, i_y;
|
||||
int16_t k_x, k_y;
|
||||
|
||||
for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
|
||||
{
|
||||
for (i_y = 0; i_y < dim_im_out; i_y++)
|
||||
{
|
||||
for (i_x = 0; i_x < dim_im_out; i_x++)
|
||||
{
|
||||
int sum = 0;
|
||||
int count = 0;
|
||||
for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
|
||||
{
|
||||
for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
|
||||
{
|
||||
if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
|
||||
{
|
||||
sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* ARM_MATH_DSP */
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Pooling group
|
||||
*/
|
||||
20
Drivers/CMSIS/NN/Source/ReshapeFunctions/CMakeLists.txt
Normal file
20
Drivers/CMSIS/NN/Source/ReshapeFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_*.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC})
|
||||
57
Drivers/CMSIS/NN/Source/ReshapeFunctions/arm_reshape_s8.c
Normal file
57
Drivers/CMSIS/NN/Source/ReshapeFunctions/arm_reshape_s8.c
Normal file
@@ -0,0 +1,57 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_reshape_s8.c
|
||||
* Description: Reshape a s8 vector
|
||||
*
|
||||
* $Date: September 2019
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Reshape
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* Basic s8 reshape function.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size)
|
||||
{
|
||||
arm_memcpy_q7(output, input, total_size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Reshape group
|
||||
*/
|
||||
20
Drivers/CMSIS/NN/Source/SVDFunctions/CMakeLists.txt
Normal file
20
Drivers/CMSIS/NN/Source/SVDFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
#
|
||||
# Copyright (c) 2019-2021 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC})
|
||||
271
Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c
Normal file
271
Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c
Normal file
@@ -0,0 +1,271 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_svdf_s8.c
|
||||
* Description: S8 basic SVDF layer function
|
||||
*
|
||||
* $Date: 28 April 2022
|
||||
* $Revision: V.3.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M processors
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SVDF
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* S8 SVDF layer function for TensorFlow Lite with 8 bit state tensor
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
|
||||
const cmsis_nn_context *output_ctx,
|
||||
const cmsis_nn_svdf_params *svdf_params,
|
||||
const cmsis_nn_per_tensor_quant_params *input_quant_params,
|
||||
const cmsis_nn_per_tensor_quant_params *output_quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *state_dims,
|
||||
q7_t *state_data,
|
||||
const cmsis_nn_dims *weights_feature_dims,
|
||||
const q7_t *weights_feature_data,
|
||||
const cmsis_nn_dims *weights_time_dims,
|
||||
const q7_t *weights_time_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const q31_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
(void)state_dims;
|
||||
(void)output_dims;
|
||||
|
||||
const q31_t multiplier_in = input_quant_params->multiplier;
|
||||
const q31_t shift_in = input_quant_params->shift;
|
||||
const q31_t multiplier_out = output_quant_params->multiplier;
|
||||
const q31_t shift_2 = output_quant_params->shift;
|
||||
const int32_t zp_in = svdf_params->input_offset;
|
||||
const int32_t zp_out = svdf_params->output_offset;
|
||||
const int32_t in_activation_min = svdf_params->input_activation.min;
|
||||
const int32_t in_activation_max = svdf_params->input_activation.max;
|
||||
const int32_t out_activation_min = svdf_params->output_activation.min;
|
||||
const int32_t out_activation_max = svdf_params->output_activation.max;
|
||||
const int16_t rank = svdf_params->rank;
|
||||
|
||||
const int32_t input_batches = input_dims->n;
|
||||
const int32_t input_height = input_dims->h;
|
||||
const int32_t feature_batches = weights_feature_dims->n;
|
||||
const int32_t time_batches = weights_time_dims->h;
|
||||
const int32_t unit_count = feature_batches / rank;
|
||||
|
||||
if (input_ctx->buf == NULL)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q31_t *buffer_a = (q31_t *)input_ctx->buf;
|
||||
|
||||
if (output_ctx->buf == NULL)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q31_t *buffer_b = (q31_t *)output_ctx->buf;
|
||||
|
||||
// Left shift state
|
||||
memmove((int8_t *)state_data,
|
||||
(int8_t *)state_data + 1,
|
||||
(size_t)((input_batches * feature_batches * time_batches - 1) * (int32_t)sizeof(int8_t)));
|
||||
|
||||
// Matrix multiplication input * feature weight
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
q7_t *res_ptr = state_data + (time_batches * i_batch * feature_batches) + (time_batches - 1);
|
||||
const q7_t *weight = weights_feature_data;
|
||||
const q7_t *input = input_data + i_batch * input_height;
|
||||
|
||||
arm_status res = arm_nn_vec_mat_mult_t_s8(input,
|
||||
weight,
|
||||
NULL,
|
||||
res_ptr,
|
||||
-zp_in,
|
||||
0,
|
||||
0,
|
||||
multiplier_in,
|
||||
shift_in,
|
||||
input_height,
|
||||
feature_batches,
|
||||
in_activation_min,
|
||||
in_activation_max,
|
||||
time_batches);
|
||||
|
||||
if (res != ARM_MATH_SUCCESS)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
// Matrix multiplicate time weight * state tensors
|
||||
{
|
||||
q31_t *ptr_a = buffer_a;
|
||||
const int8_t *v2 = state_data;
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
const int8_t *v1 = weights_time_data;
|
||||
|
||||
for (int i_feature_batch = 0; i_feature_batch < feature_batches; i_feature_batch++)
|
||||
{
|
||||
*ptr_a = 0;
|
||||
int32_t sum = 0;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
// Perform matrix multiplication in blocks of four
|
||||
int j = 0;
|
||||
int32_t block_count = time_batches >> 2;
|
||||
for (int i = 0; i < block_count; i++)
|
||||
{
|
||||
j += 4;
|
||||
|
||||
q31_t r1_1, r1_2, r2_1, r2_2;
|
||||
v1 = read_and_pad_reordered(v1, &r1_1, &r1_2);
|
||||
v2 = read_and_pad_reordered(v2, &r2_1, &r2_2);
|
||||
sum = __SMLAD(r1_1, r2_1, sum);
|
||||
sum = __SMLAD(r1_2, r2_2, sum);
|
||||
}
|
||||
|
||||
// Process the remaining data
|
||||
for (; j < time_batches; j++)
|
||||
{
|
||||
sum += *v1 * *v2;
|
||||
v1++;
|
||||
v2++;
|
||||
}
|
||||
#else
|
||||
for (int j = 0; j < time_batches; j++)
|
||||
{
|
||||
sum += *v1 * *v2;
|
||||
v1++;
|
||||
v2++;
|
||||
}
|
||||
#endif
|
||||
|
||||
*ptr_a = sum;
|
||||
ptr_a++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bias_data)
|
||||
{
|
||||
if (unit_count == feature_batches)
|
||||
{
|
||||
for (int i = 0; i < input_batches; i++)
|
||||
{
|
||||
q31_t *output_temp = buffer_b + i * feature_batches;
|
||||
const q31_t *ptr_a = buffer_a + i * feature_batches;
|
||||
|
||||
const int32_t *bi = bias_data;
|
||||
for (int j = 0; j < feature_batches; j++)
|
||||
{
|
||||
output_temp[j] = ptr_a[j] + bi[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
q31_t *output_data_temp = buffer_b + i_batch * unit_count;
|
||||
q31_t *ptr_a = buffer_a + i_batch * feature_batches;
|
||||
|
||||
for (int i = 0; i < unit_count; i++)
|
||||
{
|
||||
int32_t sum = bias_data[i];
|
||||
for (int j = 0; j < rank; j++)
|
||||
{
|
||||
sum += *ptr_a;
|
||||
ptr_a++;
|
||||
}
|
||||
output_data_temp[i] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
q31_t *output_data_temp = buffer_b + i_batch * unit_count;
|
||||
q31_t *ptr_a = buffer_a + i_batch * feature_batches;
|
||||
|
||||
for (int i = 0; i < unit_count; i++)
|
||||
{
|
||||
int32_t sum = 0;
|
||||
for (int j = 0; j < rank; j++)
|
||||
{
|
||||
sum += *ptr_a;
|
||||
ptr_a++;
|
||||
}
|
||||
output_data_temp[i] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t num_elements = input_batches * unit_count;
|
||||
const int32_t loop_count = (num_elements + 3) / 4;
|
||||
for (int i_op = 0; i_op < loop_count; i_op++)
|
||||
{
|
||||
mve_pred16_t p = vctp32q((uint32_t)num_elements);
|
||||
int32x4_t op = vldrwq_z_s32(buffer_b, p);
|
||||
op = arm_requantize_mve(op, multiplier_out, shift_2);
|
||||
op = vaddq_n_s32(op, zp_out);
|
||||
const int32x4_t min_vec = vdupq_n_s32((int8_t)out_activation_min);
|
||||
const int32x4_t max_vec = vdupq_n_s32((int8_t)out_activation_max);
|
||||
op = vmaxq_s32(op, min_vec);
|
||||
op = vminq_s32(op, max_vec);
|
||||
vstrbq_p_s32(output_data, op, p);
|
||||
output_data += 4;
|
||||
buffer_b += 4;
|
||||
num_elements -= 4;
|
||||
}
|
||||
#else
|
||||
for (int i = 0; i < input_batches * unit_count; i++)
|
||||
{
|
||||
output_data[i] = (q7_t)CLAMP(
|
||||
arm_nn_requantize(buffer_b[i], multiplier_out, shift_2) + zp_out, out_activation_max, out_activation_min);
|
||||
}
|
||||
#endif
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of SVDF group
|
||||
*/
|
||||
267
Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_state_s16_s8.c
Normal file
267
Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_state_s16_s8.c
Normal file
@@ -0,0 +1,267 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_svdf_s8.c
|
||||
* Description: S8 basic SVDF layer function with s16 state tensor
|
||||
*
|
||||
* $Date: 28 April 2022
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M processors
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup SVDF
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* S8 SVDF layer function for TensorFlow Lite with 16 bit state tensor
|
||||
*
|
||||
* Refer to header file for details.
|
||||
*
|
||||
*/
|
||||
|
||||
arm_status arm_svdf_state_s16_s8(const cmsis_nn_context *input_ctx,
|
||||
const cmsis_nn_context *output_ctx,
|
||||
const cmsis_nn_svdf_params *svdf_params,
|
||||
const cmsis_nn_per_tensor_quant_params *input_quant_params,
|
||||
const cmsis_nn_per_tensor_quant_params *output_quant_params,
|
||||
const cmsis_nn_dims *input_dims,
|
||||
const q7_t *input_data,
|
||||
const cmsis_nn_dims *state_dims,
|
||||
q15_t *state_data,
|
||||
const cmsis_nn_dims *weights_feature_dims,
|
||||
const q7_t *weights_feature_data,
|
||||
const cmsis_nn_dims *weights_time_dims,
|
||||
const q15_t *weights_time_data,
|
||||
const cmsis_nn_dims *bias_dims,
|
||||
const q31_t *bias_data,
|
||||
const cmsis_nn_dims *output_dims,
|
||||
q7_t *output_data)
|
||||
{
|
||||
(void)bias_dims;
|
||||
(void)state_dims;
|
||||
(void)output_dims;
|
||||
|
||||
const q31_t multiplier_in = input_quant_params->multiplier;
|
||||
const q31_t shift_in = input_quant_params->shift;
|
||||
const q31_t multiplier_out = output_quant_params->multiplier;
|
||||
const q31_t shift_2 = output_quant_params->shift;
|
||||
const int32_t zp_in = svdf_params->input_offset;
|
||||
const int32_t zp_out = svdf_params->output_offset;
|
||||
const int32_t in_activation_min = svdf_params->input_activation.min;
|
||||
const int32_t in_activation_max = svdf_params->input_activation.max;
|
||||
const int32_t out_activation_min = svdf_params->output_activation.min;
|
||||
const int32_t out_activation_max = svdf_params->output_activation.max;
|
||||
const int16_t rank = svdf_params->rank;
|
||||
|
||||
const int32_t input_batches = input_dims->n;
|
||||
const int32_t input_height = input_dims->h;
|
||||
const int32_t feature_batches = weights_feature_dims->n;
|
||||
const int32_t time_batches = weights_time_dims->h;
|
||||
const int32_t unit_count = feature_batches / rank;
|
||||
|
||||
if (input_ctx->buf == NULL)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q31_t *buffer_a = (q31_t *)input_ctx->buf;
|
||||
|
||||
if (output_ctx->buf == NULL)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
q31_t *buffer_b = (q31_t *)output_ctx->buf;
|
||||
|
||||
// Left shift state
|
||||
memmove((q15_t *)state_data,
|
||||
(q15_t *)state_data + 1,
|
||||
(size_t)((input_batches * feature_batches * time_batches - 1) * (int32_t)sizeof(int16_t)));
|
||||
|
||||
// Matrix multiplication input * feature weight
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
q15_t *res_ptr = state_data + (time_batches * i_batch * feature_batches) + (time_batches - 1);
|
||||
const q7_t *weight = weights_feature_data;
|
||||
const q7_t *input = input_data + i_batch * input_height;
|
||||
|
||||
arm_status res = arm_nn_vec_mat_mult_t_svdf_s8(input,
|
||||
weight,
|
||||
res_ptr,
|
||||
-zp_in,
|
||||
0,
|
||||
time_batches,
|
||||
multiplier_in,
|
||||
shift_in,
|
||||
input_height,
|
||||
feature_batches,
|
||||
in_activation_min,
|
||||
in_activation_max);
|
||||
|
||||
if (res != ARM_MATH_SUCCESS)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// Matrix multiplication time weight * state tensors
|
||||
q31_t *ptr_a = buffer_a;
|
||||
const q15_t *v2 = state_data;
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
const q15_t *v1 = weights_time_data;
|
||||
|
||||
for (int i_feature_batch = 0; i_feature_batch < feature_batches; i_feature_batch++)
|
||||
{
|
||||
*ptr_a = 0;
|
||||
int32_t sum = 0;
|
||||
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||||
// Perform matrix multiplication in blocks of two
|
||||
int j = 0;
|
||||
int32_t block_count = time_batches >> 1;
|
||||
for (int i = 0; i < block_count; i++)
|
||||
{
|
||||
j += 2;
|
||||
q31_t r1 = arm_nn_read_q15x2_ia(&v1);
|
||||
q31_t r2 = arm_nn_read_q15x2_ia(&v2);
|
||||
|
||||
sum = __SMLAD(r1, r2, sum);
|
||||
}
|
||||
|
||||
// Process the remaining data
|
||||
for (; j < time_batches; j++)
|
||||
{
|
||||
sum += *v1 * *v2;
|
||||
v1++;
|
||||
v2++;
|
||||
}
|
||||
#else
|
||||
for (int j = 0; j < time_batches; j++)
|
||||
{
|
||||
sum += *v1 * *v2;
|
||||
v1++;
|
||||
v2++;
|
||||
}
|
||||
#endif
|
||||
|
||||
*ptr_a = sum;
|
||||
ptr_a++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bias_data)
|
||||
{
|
||||
if (unit_count == feature_batches)
|
||||
{
|
||||
for (int i = 0; i < input_batches; i++)
|
||||
{
|
||||
q31_t *output_temp = buffer_b + i * feature_batches;
|
||||
const q31_t *ptr_a = buffer_a + i * feature_batches;
|
||||
|
||||
const int32_t *bi = bias_data;
|
||||
for (int j = 0; j < feature_batches; j++)
|
||||
{
|
||||
output_temp[j] = ptr_a[j] + bi[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
q31_t *output_data_temp = buffer_b + i_batch * unit_count;
|
||||
q31_t *ptr_a = buffer_a + i_batch * feature_batches;
|
||||
|
||||
for (int i = 0; i < unit_count; i++)
|
||||
{
|
||||
int32_t sum = bias_data[i];
|
||||
for (int j = 0; j < rank; j++)
|
||||
{
|
||||
sum += *ptr_a;
|
||||
ptr_a++;
|
||||
}
|
||||
output_data_temp[i] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||||
{
|
||||
q31_t *output_data_temp = buffer_b + i_batch * unit_count;
|
||||
q31_t *ptr_a = buffer_a + i_batch * feature_batches;
|
||||
|
||||
for (int i = 0; i < unit_count; i++)
|
||||
{
|
||||
int32_t sum = 0;
|
||||
for (int j = 0; j < rank; j++)
|
||||
{
|
||||
sum += *ptr_a;
|
||||
ptr_a++;
|
||||
}
|
||||
output_data_temp[i] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(ARM_MATH_MVEI)
|
||||
int32_t num_elements = input_batches * unit_count;
|
||||
const int32_t loop_count = (num_elements + 3) / 4;
|
||||
for (int i_op = 0; i_op < loop_count; i_op++)
|
||||
{
|
||||
mve_pred16_t p = vctp32q((uint32_t)num_elements);
|
||||
int32x4_t op = vldrwq_z_s32(buffer_b, p);
|
||||
op = arm_requantize_mve(op, multiplier_out, shift_2);
|
||||
op = vaddq_n_s32(op, zp_out);
|
||||
const int32x4_t min_vec = vdupq_n_s32((int8_t)out_activation_min);
|
||||
const int32x4_t max_vec = vdupq_n_s32((int8_t)out_activation_max);
|
||||
op = vmaxq_s32(op, min_vec);
|
||||
op = vminq_s32(op, max_vec);
|
||||
vstrbq_p_s32(output_data, op, p);
|
||||
output_data += 4;
|
||||
buffer_b += 4;
|
||||
num_elements -= 4;
|
||||
}
|
||||
#else
|
||||
for (int i = 0; i < input_batches * unit_count; i++)
|
||||
{
|
||||
output_data[i] = (q7_t)CLAMP(
|
||||
arm_nn_requantize(buffer_b[i], multiplier_out, shift_2) + zp_out, out_activation_max, out_activation_min);
|
||||
}
|
||||
#endif
|
||||
|
||||
return (ARM_MATH_SUCCESS);
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of SVDF group
|
||||
*/
|
||||
22
Drivers/CMSIS/NN/Source/SoftmaxFunctions/CMakeLists.txt
Normal file
22
Drivers/CMSIS/NN/Source/SoftmaxFunctions/CMakeLists.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
#
|
||||
# Copyright (c) 2019-2022 Arm Limited.
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
# not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
file(GLOB SRC "./*_s8.c")
|
||||
target_sources(cmsis-nn PRIVATE ${SRC} arm_softmax_s8_s16.c
|
||||
arm_softmax_s16.c
|
||||
arm_nn_softmax_common_s8.c)
|
||||
@@ -0,0 +1,141 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_nn_softmax_common_s8.c
|
||||
* Description: Softmax with s8 input and output of s8 or s16.
|
||||
*
|
||||
* $Date: 17 March 2022
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M processors
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
#define ACCUM_BITS 12
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
/*
|
||||
* Softmax function with s8 input and output of s8 or s16.
|
||||
*
|
||||
* Refer header file for details.
|
||||
*
|
||||
*/
|
||||
void arm_nn_softmax_common_s8(const int8_t *input,
|
||||
const int32_t num_rows,
|
||||
const int32_t row_size,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
const bool int16_output,
|
||||
void *output)
|
||||
{
|
||||
const int32_t mask = (1 << shift);
|
||||
|
||||
int32_t col = 0;
|
||||
int32_t row_idx;
|
||||
|
||||
for (row_idx = 0; row_idx < num_rows; ++row_idx)
|
||||
{
|
||||
// Find the maximum value in order to ensure numerical stability
|
||||
int8_t max = *input;
|
||||
|
||||
for (col = 1; col < row_size; ++col)
|
||||
{
|
||||
max = MAX(max, input[col]);
|
||||
}
|
||||
|
||||
int32_t diff = 0;
|
||||
int32_t sum = 0;
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
diff = input[col] - max;
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom = __CLZ(sum);
|
||||
const int32_t shifted_scale = ONE_OVER1((sum > 0 ? sum << headroom : 0) - (1 << 31));
|
||||
int32_t bits_over_unit;
|
||||
|
||||
if (int16_output)
|
||||
{
|
||||
int16_t *output_s16 = (int16_t *)output + row_idx * row_size;
|
||||
|
||||
bits_over_unit = ACCUM_BITS - headroom + 15;
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
diff = input[col] - max;
|
||||
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
const int32_t res =
|
||||
DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) +
|
||||
NN_Q15_MIN;
|
||||
output_s16[col] = (int16_t)CLAMP(res, (int32_t)NN_Q15_MAX, (int32_t)NN_Q15_MIN);
|
||||
}
|
||||
else
|
||||
{
|
||||
output_s16[col] = NN_Q15_MIN;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int8_t *output_s8 = (int8_t *)output + row_idx * row_size;
|
||||
|
||||
bits_over_unit = ACCUM_BITS - headroom + 23;
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
diff = input[col] - max;
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
const int32_t res =
|
||||
DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) +
|
||||
NN_Q7_MIN;
|
||||
output_s8[col] = (int8_t)CLAMP(res, (int32_t)NN_Q7_MAX, (int32_t)NN_Q7_MIN);
|
||||
}
|
||||
else
|
||||
{
|
||||
output_s8[col] = NN_Q7_MIN;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
input += row_size;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of NNBasicMath group
|
||||
*/
|
||||
118
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
Normal file
118
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
Normal file
@@ -0,0 +1,118 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_q15.c
|
||||
* Description: Q15 softmax function
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q15 softmax function
|
||||
* @param[in] vec_in pointer to input vector
|
||||
* @param[in] dim_vec input vector dimention
|
||||
* @param[out] p_out pointer to output vector
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Here, instead of typical e based softmax, we use
|
||||
* 2-based softmax, i.e.,:
|
||||
*
|
||||
* y_i = 2^(x_i) / sum(2^x_j)
|
||||
*
|
||||
* The relative output will be different here.
|
||||
* But mathematically, the gradient will be the same
|
||||
* with a log(2) scaling factor.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out)
|
||||
{
|
||||
q31_t sum;
|
||||
int16_t i;
|
||||
uint8_t shift;
|
||||
q31_t base;
|
||||
base = -1 * 0x100000;
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
if (vec_in[i] > base)
|
||||
{
|
||||
base = vec_in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* we ignore really small values
|
||||
* anyway, they will be 0 after shrinking
|
||||
* to q15_t
|
||||
*/
|
||||
base = base - 16;
|
||||
|
||||
sum = 0;
|
||||
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
if (vec_in[i] > base)
|
||||
{
|
||||
shift = (uint8_t)__USAT(vec_in[i] - base, 5);
|
||||
sum += 0x1 << shift;
|
||||
}
|
||||
}
|
||||
|
||||
/* This is effectively (0x1 << 32) / sum */
|
||||
int64_t div_base = 0x100000000LL;
|
||||
int output_base = (int32_t)(div_base / sum);
|
||||
|
||||
/* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) )
|
||||
* so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16
|
||||
* and vec_in[i]-base = 16
|
||||
*/
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
if (vec_in[i] > base)
|
||||
{
|
||||
/* Here minimum value of 17+base-vec[i] will be 1 */
|
||||
shift = (uint8_t)__USAT(17 + base - vec_in[i], 5);
|
||||
p_out[i] = (q15_t)__SSAT((output_base >> shift), 16);
|
||||
}
|
||||
else
|
||||
{
|
||||
p_out[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
107
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
Normal file
107
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
Normal file
@@ -0,0 +1,107 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_q7.c
|
||||
* Description: Q7 softmax function
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 softmax function
|
||||
* @param[in] vec_in pointer to input vector
|
||||
* @param[in] dim_vec input vector dimention
|
||||
* @param[out] p_out pointer to output vector
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Here, instead of typical natural logarithm e based softmax, we use
|
||||
* 2-based softmax here, i.e.,:
|
||||
*
|
||||
* y_i = 2^(x_i) / sum(2^x_j)
|
||||
*
|
||||
* The relative output will be different here.
|
||||
* But mathematically, the gradient will be the same
|
||||
* with a log(2) scaling factor.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out)
|
||||
{
|
||||
q31_t sum;
|
||||
int16_t i;
|
||||
uint8_t shift;
|
||||
q15_t base;
|
||||
base = -128;
|
||||
|
||||
/* We first search for the maximum */
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
if (vec_in[i] > base)
|
||||
{
|
||||
base = vec_in[i];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* So the base is set to max-8, meaning
|
||||
* that we ignore really small values.
|
||||
* anyway, they will be 0 after shrinking to q7_t.
|
||||
*/
|
||||
base = base - (1 << 3);
|
||||
|
||||
sum = 0;
|
||||
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
shift = (uint8_t)__USAT(vec_in[i] - base, 3);
|
||||
sum += 0x1 << shift;
|
||||
}
|
||||
|
||||
/* This is effectively (0x1 << 20) / sum */
|
||||
int output_base = (1 << 20) / sum;
|
||||
|
||||
for (i = 0; i < dim_vec; i++)
|
||||
{
|
||||
|
||||
/* Here minimum value of 13+base-vec_in[i] will be 5 */
|
||||
shift = (uint8_t)__USAT(13 + base - vec_in[i], 5);
|
||||
p_out[i] = (q7_t)__SSAT((output_base >> shift), 8);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
122
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s16.c
Normal file
122
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s16.c
Normal file
@@ -0,0 +1,122 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_s16.c
|
||||
* Description: S16 softmax function
|
||||
*
|
||||
* $Date: 9 March 2022
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
arm_status arm_softmax_s16(const int16_t *input,
|
||||
const int32_t num_rows,
|
||||
const int32_t row_size,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const cmsis_nn_softmax_lut_s16 *softmax_params,
|
||||
int16_t *output)
|
||||
{
|
||||
int32_t col = 0;
|
||||
int32_t row_idx;
|
||||
|
||||
if (softmax_params->exp_lut == NULL || softmax_params->one_by_one_lut == NULL)
|
||||
{
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
for (row_idx = 0; row_idx < num_rows; ++row_idx)
|
||||
{
|
||||
// Find the maximum value in order to ensure numerical stability
|
||||
int16_t max = *input;
|
||||
for (col = 1; col < row_size; ++col)
|
||||
{
|
||||
max = MAX(max, input[col]);
|
||||
}
|
||||
|
||||
int32_t diff = 0;
|
||||
int32_t sum = 0;
|
||||
int16_t *cached_exp_results = output;
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
diff = input[col] - max;
|
||||
const int32_t scaled_diff = arm_nn_requantize(diff, mult, shift);
|
||||
const int32_t symmetric_scaled_diff = scaled_diff + NN_Q15_MAX;
|
||||
const int16_t saturated_symmetric_scaled_diff = MIN(MAX(symmetric_scaled_diff, NN_Q15_MIN), NN_Q15_MAX);
|
||||
|
||||
// Lookup from exp table and cache result for next step
|
||||
const int16_t index = (256 + (saturated_symmetric_scaled_diff >> 7));
|
||||
const int16_t offset = saturated_symmetric_scaled_diff & 0x7f;
|
||||
const int16_t base = softmax_params->exp_lut[index];
|
||||
const int16_t slope = softmax_params->exp_lut[index + 1] - softmax_params->exp_lut[index];
|
||||
const int16_t delta = (slope * offset + 64) >> 7;
|
||||
const int16_t result = (base + delta);
|
||||
cached_exp_results[col] = result;
|
||||
|
||||
sum += cached_exp_results[col];
|
||||
}
|
||||
|
||||
const int32_t headroom = __CLZ(sum);
|
||||
|
||||
// Compute the reciprocal 1/sum
|
||||
const int32_t shifted_sum = (((sum) << (headroom - 1)) + (1 << 13)) >> 14;
|
||||
|
||||
// Since LUT computes 1/(1 + x), compute x = (sum - 1) => -65536
|
||||
// Since LUT expects a symmetrical input, recenter from [UINT16_MIN, UINT16_MAX] to [INT16_MIN, INT16_MAX] =>
|
||||
// -32768 ==> So in total -65536 -32768 => -98304
|
||||
const int16_t symmetric_shifted_sum = shifted_sum - 98304;
|
||||
|
||||
// Lookup from one by one table
|
||||
const int16_t index = (256 + (symmetric_shifted_sum >> 7));
|
||||
const int16_t offset = symmetric_shifted_sum & 0x7f;
|
||||
const int16_t base = softmax_params->one_by_one_lut[index];
|
||||
const int16_t slope = softmax_params->one_by_one_lut[index + 1] - softmax_params->one_by_one_lut[index];
|
||||
const int16_t delta = (slope * offset + 64) >> 7;
|
||||
const int16_t one_by_one_result = (base + delta);
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
const int16_t right_shift = 30 - headroom;
|
||||
int32_t result = (cached_exp_results[col] * one_by_one_result) >> right_shift;
|
||||
result = (result + 1) >> 1; // Last shift position and insert round
|
||||
output[col] = (int16_t)result;
|
||||
}
|
||||
|
||||
output += row_size;
|
||||
input += row_size;
|
||||
}
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
215
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s8.c
Normal file
215
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s8.c
Normal file
@@ -0,0 +1,215 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2022 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_s8.c
|
||||
* Description: S8 softmax function
|
||||
*
|
||||
* $Date: 9 March 2022
|
||||
* $Revision: V.2.1.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
#define ACCUM_BITS 12
|
||||
|
||||
#ifdef ARM_MATH_MVEI
|
||||
static int32x4_t arm_exp_on_negative_values_mve_32x4(int32x4_t val)
|
||||
{
|
||||
#define SHIFT_START (24)
|
||||
int32_t shift = SHIFT_START;
|
||||
int32x4_t mask;
|
||||
|
||||
const int32x4_t val_mod_minus_quarter =
|
||||
vandq_s32(val, vdupq_n_s32((1 << SHIFT_START) - 1)) - vdupq_n_s32(1 << SHIFT_START);
|
||||
const int32x4_t remainder = vsubq_s32(val_mod_minus_quarter, val);
|
||||
const int32x4_t x = vaddq_n_s32(val_mod_minus_quarter << 5, 1 << 28);
|
||||
const int32x4_t x2 = MUL_SAT_MVE(x, x);
|
||||
const int32x4_t op_1 = DIV_POW2_MVE(MUL_SAT_MVE(x2, x2), 2) + MUL_SAT_MVE(x2, x);
|
||||
const int32x4_t op_2 = x + DIV_POW2_MVE(MUL_SAT_MVE(op_1, vdupq_n_s32(715827883)) + x2, 1);
|
||||
int32x4_t result = vdupq_n_s32(1895147668) + MUL_SAT_MVE(vdupq_n_s32(1895147668), op_2);
|
||||
|
||||
#define SELECT_IF_NON_ZERO(x) \
|
||||
{ \
|
||||
mve_pred16_t p = vcmpneq_n_s32(remainder & vdupq_n_s32(1 << shift++), 0); \
|
||||
mask = vmvnq_m_s32(vdupq_n_s32(0), vdupq_n_s32(0), p); \
|
||||
result = SELECT_USING_MASK(mask, MUL_SAT_MVE(result, vdupq_n_s32(x)), result); \
|
||||
}
|
||||
|
||||
SELECT_IF_NON_ZERO(1672461947)
|
||||
SELECT_IF_NON_ZERO(1302514674)
|
||||
SELECT_IF_NON_ZERO(790015084)
|
||||
SELECT_IF_NON_ZERO(290630308)
|
||||
SELECT_IF_NON_ZERO(39332535)
|
||||
SELECT_IF_NON_ZERO(720401)
|
||||
SELECT_IF_NON_ZERO(242)
|
||||
|
||||
#undef SELECT_IF_NON_ZERO
|
||||
|
||||
mve_pred16_t p = vcmpeqq_n_s32(val, 0);
|
||||
mask = vmvnq_m_s32(vdupq_n_s32(0), vdupq_n_s32(0), p);
|
||||
|
||||
result = SELECT_USING_MASK(mask, vdupq_n_s32(NN_Q31_MAX), result);
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_softmax_s8(const int8_t *input,
|
||||
const int32_t num_rows,
|
||||
const int32_t row_size,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int8_t *output)
|
||||
{
|
||||
#ifdef ARM_MATH_MVEI
|
||||
|
||||
#define ACT_MIN ((int8_t)NN_Q7_MIN)
|
||||
#define ACT_MAX ((int8_t)NN_Q7_MAX)
|
||||
|
||||
const int32_t mask = (1 << shift);
|
||||
|
||||
for (int i_num_rows = 0; i_num_rows < num_rows; ++i_num_rows)
|
||||
{
|
||||
int8_t max = ACT_MIN;
|
||||
|
||||
int32_t vec_count = (row_size + 15) / 16;
|
||||
uint32_t r_count = (uint32_t)row_size;
|
||||
for (int i = 0; i < vec_count; i++)
|
||||
{
|
||||
mve_pred16_t p = vctp8q(r_count);
|
||||
const int8x16_t ip = vldrbq_z_s8(&input[i * 16], p);
|
||||
max = vmaxvq_p_s8(max, ip, p);
|
||||
r_count -= 16;
|
||||
}
|
||||
|
||||
vec_count = row_size / 4;
|
||||
int32_t idx = 0;
|
||||
int32_t sum = 0;
|
||||
|
||||
while (vec_count)
|
||||
{
|
||||
int32x4_t ip = vldrbq_s32(&input[idx * 4]);
|
||||
ip = vsubq_n_s32(ip, max);
|
||||
mve_pred16_t p = vcmpgeq_n_s32(ip, diff_min);
|
||||
if (p != 0)
|
||||
{
|
||||
ip = vmulq_n_s32(ip, mask);
|
||||
|
||||
int32x4_t res = MUL_SAT_MVE(ip, vdupq_n_s32(mult));
|
||||
|
||||
res = arm_exp_on_negative_values_mve_32x4(res);
|
||||
res = DIV_POW2_MVE(res, ACCUM_BITS);
|
||||
res = vpselq_s32(res, vdupq_n_s32(0), p);
|
||||
sum += vaddvq_s32(res);
|
||||
}
|
||||
|
||||
vec_count--;
|
||||
idx++;
|
||||
}
|
||||
|
||||
const int32_t tail_idx = row_size & ~3;
|
||||
for (int i = 0; i < (row_size & 3); i++)
|
||||
{
|
||||
const int32_t diff = input[tail_idx + i] - max;
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom = __CLZ((uint32_t)sum);
|
||||
const int32_t bits_over_unit = ACCUM_BITS - headroom + 23;
|
||||
const int32_t shifted_scale = ONE_OVER1((sum > 0 ? sum << headroom : 0) - (1 << 31));
|
||||
|
||||
vec_count = row_size / 4;
|
||||
idx = 0;
|
||||
|
||||
while (vec_count)
|
||||
{
|
||||
int32x4_t ip = vldrbq_s32(&input[idx]);
|
||||
ip = vsubq_n_s32(ip, max);
|
||||
|
||||
mve_pred16_t p = vcmpgeq_n_s32(ip, diff_min);
|
||||
|
||||
int32x4_t tmp_res;
|
||||
|
||||
if (p != 0)
|
||||
{
|
||||
ip = vmulq_n_s32(ip, mask);
|
||||
|
||||
tmp_res = MUL_SAT_MVE(ip, vdupq_n_s32(mult));
|
||||
tmp_res = arm_exp_on_negative_values_mve_32x4(tmp_res);
|
||||
tmp_res = MUL_SAT_MVE(vdupq_n_s32(shifted_scale), tmp_res);
|
||||
tmp_res = DIV_POW2_MVE(tmp_res, bits_over_unit);
|
||||
tmp_res += vdupq_n_s32(ACT_MIN);
|
||||
|
||||
tmp_res = vmaxq_s32(tmp_res, vdupq_n_s32(ACT_MIN));
|
||||
tmp_res = vminq_s32(tmp_res, vdupq_n_s32(ACT_MAX));
|
||||
tmp_res = vpselq_s32(tmp_res, vdupq_n_s32(ACT_MIN), p);
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp_res = vdupq_n_s32(ACT_MIN);
|
||||
}
|
||||
vstrbq_s32(&output[idx], tmp_res);
|
||||
vec_count--;
|
||||
idx += 4;
|
||||
}
|
||||
|
||||
for (int i = 0; i < (row_size & 3); i++)
|
||||
{
|
||||
int32_t diff = input[tail_idx + i] - max;
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
const int32_t res =
|
||||
DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) +
|
||||
NN_Q7_MIN;
|
||||
output[tail_idx + i] = (int8_t)CLAMP(res, (int32_t)ACT_MAX, (int32_t)ACT_MIN);
|
||||
}
|
||||
else
|
||||
{
|
||||
output[tail_idx + i] = ACT_MIN;
|
||||
}
|
||||
}
|
||||
|
||||
input += row_size;
|
||||
output += row_size;
|
||||
}
|
||||
#else
|
||||
arm_nn_softmax_common_s8(input, num_rows, row_size, mult, shift, diff_min, false, (void *)output);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
@@ -0,0 +1,55 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_s8_s16.c
|
||||
* Description: S8 to s16 softmax function
|
||||
*
|
||||
* $Date: 7 January 2022
|
||||
* $Revision: V.1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
void arm_softmax_s8_s16(const int8_t *input,
|
||||
const int32_t num_rows,
|
||||
const int32_t row_size,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
int16_t *output)
|
||||
{
|
||||
arm_nn_softmax_common_s8(input, num_rows, row_size, mult, shift, diff_min, true, (void *)output);
|
||||
}
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
103
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_u8.c
Normal file
103
Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_u8.c
Normal file
@@ -0,0 +1,103 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_u8.c
|
||||
* Description: U8 softmax function
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.2
|
||||
*
|
||||
* Target Processor: Cortex-M CPUs
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
#include "arm_nnsupportfunctions.h"
|
||||
|
||||
#define ACCUM_BITS 12
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
void arm_softmax_u8(const uint8_t *input,
|
||||
const int32_t num_rows,
|
||||
const int32_t row_size,
|
||||
const int32_t mult,
|
||||
const int32_t shift,
|
||||
const int32_t diff_min,
|
||||
uint8_t *output)
|
||||
{
|
||||
const int32_t mask = (1 << shift);
|
||||
|
||||
int32_t col = 0;
|
||||
int32_t row_idx;
|
||||
|
||||
for (row_idx = 0; row_idx < num_rows; ++row_idx)
|
||||
{
|
||||
// Find the maximum value in order to ensure numerical stability
|
||||
uint8_t max = *input;
|
||||
|
||||
for (col = 1; col < row_size; ++col)
|
||||
{
|
||||
max = MAX(max, input[col]);
|
||||
}
|
||||
|
||||
int32_t diff = 0;
|
||||
int32_t sum = 0;
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
diff = input[col] - max;
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t headroom = __CLZ((uint32_t)sum);
|
||||
const int32_t bits_over_unit = ACCUM_BITS - headroom + 23;
|
||||
const int32_t shifted_scale = ONE_OVER1((sum << headroom) - (1 << 31));
|
||||
|
||||
for (col = 0; col < row_size; ++col)
|
||||
{
|
||||
diff = input[col] - max;
|
||||
if (diff >= diff_min)
|
||||
{
|
||||
const int32_t res =
|
||||
DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit);
|
||||
output[col] = (uint8_t)CLAMP(res, (int32_t)255, (int32_t)0);
|
||||
}
|
||||
else
|
||||
{
|
||||
output[col] = 0;
|
||||
}
|
||||
}
|
||||
input += row_size;
|
||||
output += row_size;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
@@ -0,0 +1,74 @@
|
||||
/*
|
||||
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS NN Library
|
||||
* Title: arm_softmax_with_batch_q7.c
|
||||
* Description: Q7 softmax function
|
||||
*
|
||||
* $Date: 09. October 2020
|
||||
* $Revision: V.1.0.1
|
||||
*
|
||||
* Target Processor: Cortex-M and Cortex-A cores
|
||||
*
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_nnfunctions.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupNN
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Softmax
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Q7 softmax function with batch parameter
|
||||
* @param[in] vec_in pointer to input vector
|
||||
* @param[in] nb_batches number of batches
|
||||
* @param[in] dim_vec input vector dimention
|
||||
* @param[out] p_out pointer to output vector
|
||||
*
|
||||
* @details
|
||||
*
|
||||
* Here, instead of typical natural logarithm e based softmax, we use
|
||||
* 2-based softmax here, i.e.,:
|
||||
*
|
||||
* y_i = 2^(x_i) / sum(2^x_j)
|
||||
*
|
||||
* The relative output will be different here.
|
||||
* But mathematically, the gradient will be the same
|
||||
* with a log(2) scaling factor.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out)
|
||||
{
|
||||
for (int i = 0; i < nb_batches; i++)
|
||||
{
|
||||
arm_softmax_q7(vec_in, dim_vec, p_out);
|
||||
vec_in += dim_vec;
|
||||
p_out += dim_vec;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Softmax group
|
||||
*/
|
||||
Reference in New Issue
Block a user